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Introduction

Subgroups in drug development (1/2)

Precision medicine aims at identifying (biomarker-defined)
subpopulations which differ in the efficacy (or safety) of a specific
treatment
→ Identifying treatment-by-biomarker or treatment-by-subgroup
interactions
→ Predictive biomarkers
In contrast, prognostic biomarkers predict the natural course of a disease
Biomarker may refer to genetic markers or other baseline characteristics
including demographic and clinical characteristics
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Introduction

Subgroups in drug development (2/2)

The drug’s mechanism of action often generates hypotheses whether a
biomarker is predictive or not
Without prior hypotheses about treatment-by-subgroup interactions
methods identifying subgroups are needed
Numerous available subgroup identification methods (Lipkovich et al.,
2017; Ondra et al., 2016)
Systematic and independent comparison studies are lacking
Existing comparison studies do not always consider criteria relevant in
regulatory settings
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Introduction

Subgroup identification methods

Methods for identifying subgroups with enhanced treatment effect and
selecting cut-off values in case of continuous biomarkers include

IT: Interaction Trees (Su et al., 2009)
MOB: Model-based Recursive Partitioning (Seibold et al., 2016)
STIMA: Simultaneous Threshold Interaction Modeling Algorithm
(Dusseldorp et al., 2010)
SIDES: Subgroup Identification based on Differential Effect Search
(Lipkovich et al., 2011)
ARDP: Adaptive Refinement by Directed Peeling (Patel et al., 2016;
LeBlanc et al., 2005)
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Application to ALS data

Application to Amyotrophic Lateral Sclerosis (ALS) data
(1/2)

ALS is a rare disease with an annual incidence of 2/100 000 (Atassi et
al., 2014)
ALS affects the nervous system
ALS leads to loss of muscle function and paralysis
Median survival time is about 2-3 years (EMA, 2016)
Two approved drugs in the EU: riluzole and edaravone
Both treatments do not achieve substantial benefit for ALS patients
(FDA, 2009, 2017)
PRO-ACT (Pooled Resource Open Access ALS Clinical Trials) database
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Application to ALS data

Application to ALS data (2/2)

Outcome: ALSFRS (ALS Functional Rating Scale) after 6 month
ALSFRS is the sum of 10 items regarding motor function
Each item is rated on a scale from 0 to 4 with 0 indicating no function
For illustrative purpose, preselection of two covariates based on p-values
of treatment-by-biomarker interactions in a linear model: Phosphorus
and chloride
Data include 2156 observations
Treatment effect in an identified subgroup Ŝ :

z(Ŝ) = E (Y |T = 1,X ∈ Ŝ)− E (Y |T = 0,X ∈ Ŝ),

with Y denoting the outcome, T the treatment indicator and X
denoting the covariates
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Subgroup identification methods

Interaction Tree (IT)

Phosphorus

Chloride

Chloride

ẑ=1.28
n=1405

Phosphorus

Phosphorus

ẑ=-4.23
n=40

ẑ=-3.30
n=43

ẑ=0.66
n=121

ẑ=2.68
n=402

ẑ=4.86
n=145

≤ 1.42

≤ 105.7 > 105.7

> 1.42

≤ 104 > 104

≤ 1.13 > 1.13

≤ 0.97 > 0.97

IT without pruning applied to ALS
data

Each leaf is associated with a
linear model
Model:E (Y |X) = α+β0 ·T +
β1 · T · I (Xj ≤ c) +
γ1 · I (Xj ≤ c)

Selection of split is based on
testing H0 : β1 = 0
Post-pruning based on an
interaction-complexity
criterion
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Subgroup identification methods

Model-based recursive partitioning (MOB)

Phosphorus

Phosphorus

ẑ=-1.87
n=123

ẑ=1.49
n=1186

Phosphorus

ẑ=-0.21
n=487

Phosphorus

ẑ=0.23
n=215

ẑ=4.86
n=145

≤ 1.29

≤ 0.94 > 0.94

> 1.29

≤ 1.292 > 1.292

≤ 1.42 > 1.42

MOB applied to ALS data

Each leaf is associated with a
linear model
Model: E (Y |X) = α + β · T
Selection of splitting variable is
based on testing for parameter
instabilities in α and β
Partition if p-value of test is
smaller than a nominal level
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Subgroup identification methods

Simultaneous Threshold Interaction Modeling Algorithm
(STIMA)

STIMA uses a linear regression model for modelling main effects and a
tree for modelling interactions with the treatment indicator

Treatment

R1

ȳ = 23.51
n=521

R2

ȳ = 25.12
n=1635

Control Active

E (Y |X) = α + β0 · I (T = 1) +∑p
j=1 γj · Xj

Best split: Highest increase in variance accounted for by an expanded
model

Treatment

Phosphorus

R1

ȳ = 26.54
n=1028

R2

ȳ = 22.72
n=607

R3

ȳ = 25.12
n=1635

Control

≤ 1.20 > 1.20

Active

Expanded model:
E (Y |X) = α + β0I (T = 1) +
β1I (T = 0)I (XPhosphorus > 1.2) +∑p

j=1 γjXj

Huber (UMG) Comparing subgroup methods 24 October 2019 9 / 22



Subgroup identification methods

Selection of a target population

Subgroups resulting from the methods are defined by
IT and MOB: Terminal nodes
STIMA: Combining terminal nodes of the T = 1 and T = 0 branches

Identified subgroups Ŝ meeting the criteria

z(Ŝ) > mintrt

are selected as target population, referred to as BM+

For ALS the BM+ subgroup is selected based on z(Ŝ) > 3
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Subgroup identification methods

Shape of selected BM+ subgroup in ALS example
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All identified BM+ subgroups include patients with higher phosphorus levels
and differ only slightly.

1Without originally proposed post-pruning procedure
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Simulation

Simulation - Data generating process

Data generating model

Yi = µ(Ti ,Xi ) + εi εi ∼ N (0, 1)

To assess the rate of falsely identifying a BM+ subgroup although
the treatment effect is homogeneous across the entire population, the
following model is used

µ(T ,X) = 0.2 · T + γ · I (X1 > 0)

Distribution of T ∼ B(1, 0.5) and X1,X2,X3,X4
iid∼ N (0, 1)

Number of simulations: 500 per scenario
Selection of the BM+ subgroup is based on the threshold mintrt = 0.4
Sample size n and effect of prognostic variables γ are varied
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Simulation

False discovery rate
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STIMA and IT have false discovery rates below 2% across all settings
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Simulation

Proportion of correctly classified patients
Step function scenario

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●
●

●

●

●
●

●
●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●
●

●
●
●

●

●

●●

●
●●

●
●

●●
●
●●
●
●●●
●●
●

●

●
●●●
●
●
●

●

●●●

●
●

●
●●

●

●
●●

●
●●●●
●

●

●

●
●

●●●
●●●
●

●

●●●●●●

●

●
●

●

●

●
●

●

●

●

●
●
●●●●
●
●
●
●●●
●

●

●

●●●●

●

●●

●

●

●●●
●

●●
●
●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●●●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●●●
●●

●

●
●
●●
●
●

●
●

●

●

●

●

●
●
●●
●●●●
●

●

●●

●

●●
●●●

●

●
●●●●
●●
●●
●

●

●
●●
●●
●

●

●

●
●●
●
●

●

●
●●●●

●

●

●

●

●

●●●●●●●
●●
●●●

●●

●●

●

●●●
●●

●

●
●

●

●●

●

●

●

●
●

●
●●●●●●●●
●
●
●●●
●●●●●●●●●
●●
●
●
●
●●●●
●●●●●●●
●
●●●
●
●●
●●●●
●●●●●
●●
●●●●●●
●
●●
●●●●
●●●●
●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●
●●
●●●
●
●
●
●
●●
●
●
●●
●●
●

IT MOB STIMA

600 1200 2400 600 1200 2400 600 1200 2400

0.25

0.50

0.75

1.00

Sample size

S
el

ec
tio

n 
A

cc
ur

ac
y

Data generation based on µ(T ,X) = 0.2 · T + 0.5 · T · I (X1 > 0) resulting in
treatment effects of 0.2 and 0.7 in subgroups X1 ≤ 0 and X1 > 0,respectively
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Simulation

Proportion of correctly classified patients
Prognostic effects scenario
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Data generation with a larger interaction based on
µ(T ,X) = −0.3 · X1 + 0.4 · X2 + 0.3 · X4 + T · I (X1 > 0)
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Summary

Summary (1/3)

The erroneous selection of a target population although none exists
occurs the least frequently for IT and STIMA
ARDP is not suitable to select BM+ subgroups when the threshold
mintrt is chosen to be close to the treatment effect in the overall
population (data not shown)
With SIDES we obtain better BM+ subgroups in the presence of no
treatment effect in the overall population compared to settings where
an overall treatment effect is present (data not shown)
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Summary

Summary (2/3)

MOB, IT and STIMA classify patients well into a target subgroup and
its complement when both sample size and treatment-by-subgroup
interaction effect size are larger
Exception: Settings with prognostic markers
STIMA is the method of choice in scenarios where all considered
covariates are prognostic covariates
MOB is the most promising when we can assume that biomarkers are
only predictive or both prognostic and predictive at the same time
→ Model parameters in the identified subgroups should be examined in
order to decide whether biomarker is only prognostic
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Summary

Summary (3/3)

All methods have difficulties with the identification of a target subgroup
when data include only 600 (or less) observations and when the
treatment effect is smaller.
Considered sample sizes of (n≥600) are rarely found in phase II trials
with continuous outcome
Pooling data of multiple trials and accounting for between-trial
heterogeneity
⇒ Some extension for individual patient data meta-analysis available
(Mistry et al., 2018; Fokkema et al., 2017; Patel et al., 2016)
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Summary

Discussion

Limitations of the simulation study
Small number of potential predictive markers
Independent covariates
Only continuous covariates

Restriction of the target population might increase probability of
success of future trials
IT, STIMA and MOB helpful for identifying restricted target population
Adding biological rational based on the drug’s mechanism of action
adds to credibility of exploratory subgroup findings
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Overview of the methods’ properties (1/4)

IT MOB STIMA SIDES ARDP

Aim
Identifying subgroups defined by
predictive covariates

yes yes yes yes yes

Identifying subgroups defined by
prognostic covariates

no yes no no no∗

∗ ARDP initially proposed by (LeBlanc et al., 2005) was developed for identifying
prognostic markers only. The here used extension by Patel et al.(Patel et al., 2016)
aims at peeling on predictive markers only.
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Overview of the methods’ properties (2/4)

IT MOB STIMA SIDES ARDP

Algorithm
Recursive partitioning yes yes yes yes no
Evaluating splitting criterion at
every possible cut-off point for
every covariate

yes no yes yes no

Selection of covariate and cut-off
value simultaneously

yes no yes yes yes

Covariates can be involved in mul-
tiple splits

yes yes yes no yes

Post-pruning procedure yes no yes N/A N/A

Statements not reasonably interpretable are marked with N/A.
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Overview of the methods’ properties (3/4)

IT MOB STIMA SIDES ARDP

Underlying model structure
Regression model yes yes yes no yes
Adjustment for covariate main ef-
fects

yes no yes no yes

- All covariates as main effects no no yes no yes
- Dichotomized covariates

main effects
yes no no no no
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Overview of the methods’ properties (4/4)

IT MOB STIMA SIDES ARDP

Results
Method results in a tree yes yes yes no yes
End nodes are the identified sub-
groups

yes yes no N/A no

Additional steps needed for ob-
taining subgroups

no no yes no yes

Identified subgroups can be over-
lapping

no no N/A yes N/A

Statements not reasonably interpretable are marked with N/A.
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Subgroup Identification based on Differential Effect Search
(SIDES)

Phophorus

R1
ẑ = 1.68
n=2076

> 0.9≤ 0.9

Chloride

R2
ẑ = 1.63
n=2136

> 92≤ 92

Phosphorus

R3 Chloride

R4
ẑ = 1.70
n=2056

> 0.9≤ 0.9

> 92≤ 92

SIDES applied to ALS data

Construction of multiple trees
Each Xj is used at most once
within each of the trees
Nodes with desirable efficacy
(based on p-value of treatment
effect) are added to a set of
candidate subgroups
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Adaptive Refinement by Directed Peeling(ARDP)

ẑ = 1.61
n=2156

R1
ẑ = 1.74
n=1701

R2
. . .

R6
ẑ = 3.26
n=204

. . . . . .

Phosphorus
≤ 1.03

Phosphorus
> 1.03

. . . . . .

Phosphorus
≤ 1.36

Phosphorus
> 1.36

. . . . . .

ARDP applied to ALS data

Remove a prespecified number
k of observations of the data in
order to improve the treatment
effect in the resulting subset
Removal is based on linear model
E (Y |X) =
α + β0T +

∑p
j=1 βjXjT + γjXj .

E.g. For βj > 0 remove k
subjects with the smallest values
of Xj

ARDP results in sequence of
nested subgroups.
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Algorithm of SIDES

Splitting criterion: Maximizing the differential effect between the two
child groups

p1 = 2

[
1− Φ

( |Zleft − Zright|√
2

)]
with Zleft and Zright denoting the test statistics for a one-sided test of
the hypothesis of no differential treatment effect in the left and right
child subgroups
Select the M best pairs of child nodes
Retain just the child group exhibiting the larger treatment effect from
each pair
If child subgroup meets a continuation criterion further splitting is
performed (not involving covariates already used for splitting)
If selection criterion is met child subgroup is added to a set of
candidate subgroups
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Algorithm of ARDP included in (Patel et al., 2016)

Illustrated by tree although no recursive partitioning method
Fit model to each node E (Y |X) = α + β0T +

∑p
j=1 βjXiT + γjXj .

Remove a prespecified number of observations for each
Xj , j = 1, . . . , p in the direction defined by the βj
(Remove observations with small values of Xj if βj > 0 )
Variable achieving the largest improvement of treatment effect
compared to the parent node is selected for the split/peeling
Keep just the child node with the larger treatment effect for further
splitting

ARDP results in sequence of nested subgroups.

S∗
1

R1 S∗
2

R2 S∗
3

X1 ≤ −0.5 X1 > −0.5

X2 ≤ 0.5 X2 > 0.5
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False discovery rate
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STIMA and IT have false discovery rates below 2% across all settings
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Falsely identifying no subgroup although "real" subgroups
are present
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For data generated with µ(T ,X) = 0.2 ·T + β1 ·T · I (X1 > 0) and β1 = 0.3
referring to a small, β1 = 0.5 to a medium and β1 = 1 to a large effect.
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Proportion of correctly classified patients
Qualitative interaction scenario
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Data generation based on µ(T ,X) =
{
I (X1 > 0) · (1− n01

n )− I (X1 ≤ 0) · n01
n

}
T

with n01 =
∑n

i=1 I (xi1 > 0)
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