Exa	mp	le
000	00	

Adaptive methods

Ignored data

Choice of weights 00000 Level- α test

Conclusion 0000

Unblinded sample-size reassessment in time-to-event clinical trials

Dominic Magirr^{1,*}, Thomas Jaki², Franz König¹ and Martin Posch¹

¹Institut für Medizinische Statistik, Medical University of Vienna ²Department of Mathematics and Statistics, Lancaster University *current affiliation: Astrazeneca, Cambridge, U.K.

September 2016

Supported by the Austrian Science Fund (FWF):P23167 and EU FP7: "Asterix" 603160

Example	Adaptive methods	Ignored data	Choice of weights	Level- α test	Conclusion
0000		00000	00000	000	0000

Outline

Example

Unblinded sample size reassessment

Adaptive methods

Ignored data

Choice of weights

 $\mathsf{Level}\text{-}\alpha \, \, \mathsf{test}$

Conclusion

Lung cancer trial (Schäfer and Müller, 2001)

- Patients randomized to "Radiotherapy + Chemotherapy" (E) or "Chemotherapy" (C)
- Median survival on C pprox 14 months
- Anticipated survival on E pprox 20 months
- Sample size: 255 events ($\alpha = 0.025$, $\beta = 0.2$)
- Exponential model ... this could be achieved with 40 months recruitment and 20 months min follow-up.

Adaptive	method
00000	

Example

gnored data

Choice of weights

Level- α test

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 0000

40 months into the trial...

- (a) patient recruitment was much slower than expected
 - only 136 patients had been randomized
- (b) the hazard rate had been over-estimated in the planning
 - only 56 events had been observed

Recommendation of Schäfer and Müller:

"abandon the trial because there [is] no chance of achieving the planned sample size within a reasonable time"

Counterproposal of study group

- Look at the data to see if there is a larger treatment effect than originally anticipated.
- If so, reduce the initially planned sample size (required number of events).
- Larger the observed treatment effect \rightarrow earlier the study ends.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adaptive methods

Example

gnored data

Choice of weights

Level- α test

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 0000

A closely related scenario Proschan & Hunsburger (1995); Irle & Schäfer (2012)

- Look at data to see if there is a smaller than anticipated treatment effect.
- If so, increase the sample size (required number of events) to give a better chance of achieving a statistically significant result.

Standard analysis will not control the type I error rate...

Adaptive design with immediate responses

E.g., under H_0 ,

$$rac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_1(X_1^{ ext{int}})
ight\} + rac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_2(Y)
ight\} \sim \mathcal{N}(0,1)$$

$$\frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_1(X_1^{\mathsf{int}}) \right\} + \frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_2(Y) \right\} \stackrel{?}{\sim} \mathcal{N}(0,1)$$

ple	Adaptive methods	Ignored data
1	00000	00000

hoice of weights

Level- α test

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 0000

When is this valid?

- ✓ Interim decision strategy based solely on (primary endpoint) treatment effect estimate.
- Interim decisions are based on partial information from patients who are yet to provide full primary endpoint response
 e.g. second-stage sample size is chosen on basis of progression-free survival when primary endpoint is overall survival.

$$\frac{1}{\sqrt{2}}\Phi^{-1}\left\{1-p_1(X_1)\right\}+\frac{1}{\sqrt{2}}\Phi^{-1}\left\{1-p_2(Y)\right\}\sim\mathcal{N}(0,1)$$

e.g., Liu & Pledger (2005) – Gaussian responses Schmidli, Bretz & Racine-Poon (2007) – Binary responses Adaptive methods

gnored data

Choice of weights 00000 Level- α test

Conclusion 0000

Extra problem with time-to-event endpoint? Jenkins, Stone & Jennison (2011); Irle & Schäfer (2012)

- Must pre-specify end of follow-up of first-stage patients, T^{end} , in definition of p_1 .
- Otherwise, p₁(X₁) [×]∼ U[0, 1] under H₀, and type I error may be inflated.

Some survival times are ignored

- Final test decision only depends on a subset of the recorded survival times; part of the observed data is ignored.
- Particularly damaging if long-term survival is of most concern (it is the survival times of earliest recruited patients that is ignored).
- Therefore, we (Magirr et al., 2016) investigated the effect of naïvely incorporating this illegitimate data into the final test statistic...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adaptive	methods
00000	

Ignored data

Choice of weights

Level- α test

Conclusion 0000

Adaptive log-rank test

"Correct" adaptive test statistic

$$Z^{\text{CORRECT}} = w_1 L_1(T^{\text{end}}) + w_2 \Phi^{-1}(1-p_2)$$

"Naïve" adaptive test statistic

$$Z^{\mathsf{NAIVE}} = w_1 L_1(T^*) + w_2 \Phi^{-1}(1-p_2)$$

- L₁(t) is the log-rank statistic based on Stage 1 patients, followed up until calendar time t.
- w_i are explicitly (Jenkins et al.) or implicitly (Irle & Schäfer) fixed weights with $w_1^2 + w_2^2 = 1$.
- T^{end} is the (implicitly) fixed end of first-stage follow up.
- *T*^{*} is the time of final analysis (dependent on interim decisions).

Example	Adaptive methods	Ignored data	Choice of weights	Level- α test	Conclusion
0000	00000	00000	00000	000	0000

Worst-case assumption

- The null distribution of Z^{CORRECT} is $\mathcal{N}(0,1)$.
- The null distribution of Z^{NAIVE} is completely unknown.
- However, we can look at the stochastic process

$$Z(t)=w_1L_1(t)+w_2\Phi^{-1}(1-p_2),\qquad t\in [\mathcal{T}^{\mathsf{end}},\mathcal{T}^{\mathsf{max}}].$$

Worst-case: the interim data (PFS, early endpoints, etc) can be used to predict exactly when $L_1(t)$ reaches its maximum.

Upper bound on type I error

An upper bound can be found assuming second-stage design is engineered such that T^* coincides with arg max $L_1(t)$:

$$\max \alpha = P_{H_0} \left\{ \max_{t \ge T^{end}} w_1 L_1(t) + w_2 \Phi^{-1}(1-p_2) > 1.96 \right\}$$

$$= \cdot \cdot$$

$$\approx \int_{0}^{1} P_{H_{0}} \left[\max_{u=u_{1}}^{1} B(u) > \sqrt{u} \frac{\{1.96 + w_{2} \Phi^{-1}(x)\}}{w_{1}} \right] \, \mathrm{d}x,$$

with $u_1 = \{ \# \text{ stage 1 events at } T^{\text{end}} \} / \{ \# \text{ stage 1 events at } T^{\text{max}} \}$

Figure : Worst case type I error for various choices of weights and information fractions.

Example 0000	Adaptive methods	lgnored data 00000	Choice of weights •0000	Level- α test	(
	Cho	bice of w_1	(Jenkins et a	l.)	

•
$$T^{\text{end}} = \min \{t : \# \text{ stage } 1 \text{ events } = d_1\}$$

- w₁ is fixed in advance.
- E.g., w₁² = d₁/(d₁ + d
 ₂), where d
 ₂ is the anticipated number of stage 2 events at time T^{end}.

•
$$T^{\text{end}} = \min \{t : \text{ total } \# \text{ events } = d\}$$
 and

$$w_1^2 = rac{\# \text{ stage 1 events at time } T^{\text{end}}}{\text{total } \# \text{ events at time } T^{\text{end}}}.$$

The advantage of the Irle & Schäfer choice of weights is that if the trial concludes as planned after observing d events, then the adaptive test statistic is the same as the standard logrank test statistic (efficient).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Additionally, the timing of the interim analysis need not be pre-specified.

The disadvantage is that it is not possible to change the recruitment rate following the interim analysis.

A comment on u_1

As well as the weight w_1 , the extent of the maximum type I error rate also depends on u_1 , which is

$$u_1 = \left\{ \# \text{ stage 1 events at } T^{end} \right\} / \left\{ \# \text{ stage 1 events at } T^{max}
ight\}$$

 $\approx \left\{ \# \text{ stage 1 events at } T^{end} \right\} / \left\{ \# \text{ patients recruited by interim} \right\}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

So, roughly speaking:

Faster recruitment \rightarrow lower $u_1 \rightarrow$ higher max α .

Figure : Expected total number of events as a function of time based on exponential survival with hazard rates $\lambda_C = 0.05$ and $\lambda_E = 0.035$. Slow recruitment: 8 patients per month for a maximum of 60 months; max $\alpha = 0.035$. Fast recruitment: 50 patients per month for a maximum of 18 months; max $\alpha = 0.045$. Vertical lines are at T^{int} , T^{end} and T^{max} .

 $\mathfrak{I} \mathfrak{Q} \mathfrak{Q}$

E	Xa	ar	n	р	ŀ	
0	0		C)		

Adaptive methods

gnored data

Choice of weights 00000 Level- α test •00 Conclusion 0000

Guaranteed level- α test

Simply increase the cut-off value k^* such that $P_{H_0} \{ \max_{t \ge T_1} Z(t) \ge k^* \} = \alpha.$

Table : Cutoff values for corrected level-0.025 test.

						u_1				
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	0.1	2.29	2.25	2.21	2.19	2.16	2.13	2.11	2.08	2.04
	0.2	2.41	2.35	2.31	2.27	2.23	2.20	2.16	2.12	2.07
	0.3	2.50	2.43	2.38	2.34	2.30	2.25	2.21	2.16	2.10
	0.4	2.58	2.50	2.44	2.39	2.34	2.30	2.25	2.19	2.12
W_1	0.5	2.64	2.56	2.49	2.44	2.38	2.33	2.27	2.21	2.14
	0.6	2.70	2.60	2.53	2.47	2.42	2.36	2.30	2.23	2.15
	0.7	2.74	2.64	2.57	2.51	2.45	2.39	2.33	2.26	2.17
	0.8	2.79	2.68	2.60	2.54	2.48	2.41	2.35	2.28	2.18
	0.9	2.83	2.72	2.64	2.57	2.50	2.43	2.37	2.29	2.19

Power of the guaranteed level- α test

When we use Z^{NAIVE} in place of Z^{CORRECT} our statistic in increased by

$$Z(T^*) - Z(T^{end}) = w_1 \left\{ L_1(T^*) - L_1(T^{end}) \right\}$$

and the α -level cut-off value is increased by

$$k^* - \Phi^{-1}(1 - \alpha).$$

The relative power of the guaranteed level- α test (compared to the "correct" adaptive test) depends on which of these differences is larger...

Choice of weights

 $\underset{\texttt{OO}}{\texttt{Level-}\alpha} \mathsf{test}$

Conclusion 0000

Figure : Difference between the noncentrality parameters of the adaptive test statistics $Z(T^*)$ and $Z(T^{end})$ as a function of the time extension $T^* - T^{end} \in [0, T^{max} - T^{end}]$. Horizontal lines are drawn at $k^* - \Phi^{-1}(0.975)$, where k^* denotes the cut-off value of the alternative level- α test.

Adaptive	methods
00000	

Ignored data 00000 Choice of weights

evel- α test

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Conclusion •000

Unblinded SSR: methods trade-off

	Type I	Informed interim	All survival	Relative
	control	decisions	times in test	power
"Independent increments"	✓	×	\checkmark	\checkmark
"Correct" adaptive	 ✓ 	\checkmark	×	\checkmark
"Naïve" adaptive	×	\checkmark	\checkmark	\checkmark
"Naïve" + k^*	 ✓ 	\checkmark	\checkmark	×

- Magirr, D., Jaki, T., König, F., and Posch, M. (2016) Sample Size Reassessment and Hypothesis Testing in Adaptive Survival Trials *PLoS ONE* 11(2).
- Schäfer, H., & Müller, H. H. (2001). Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections. *Statistics in medicine*, 20(24), 3741-3751.
- Irle, S., & Schäfer, H. (2012). Interim Design Modifications in Time-to-Event Studies. *Journal of the American Statistical Association*, 107(497), 341-348.
- Liu, Q., & Pledger, G. W. (2005). Phase 2 and 3 combination designs to accelerate drug development. *Journal of the American Statistical Association*, 100(470).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example	Adaptive methods	lgnored data	Choice of weights	Level- α test	Conclusion		
0000		00000	00000	000	00●0		
References							

- Schmidli, H., Bretz, F., & Racine-Poon, A. (2007). Bayesian predictive power for interim adaptation in seamless phase II/III trials where the endpoint is survival up to some specified timepoint. *Statistics in medicine*, 26(27), 4925-4938.
- Jenkins, M., Stone, A., & Jennison, C. (2011). An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. *Pharmaceutical statistics*, 10(4), 347-356.
- Proschan, M.A. & Hunsberger, S.A. (1995). Designed extension of studies based on conditional power. *Biometrics*, 51(4), 1315-1324.
- Mehta, C., Schäfer, H., Daniel, H., & Irle, S. (2014). Biomarker driven population enrichment for adaptive oncology trials with time to event endpoints. *Statistics in Medicine*. 33(26), 4515-4531.

Example	Adaptive methods	Ignored data	Choice of weights	Level- α test	Conclusion
0000	00000	00000	00000		000●

dominic.magirr@astrazeneca.com

