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Pharmacokinetic studies

• Pharmacokinetic studies what the body does to a drug

• Frequently measures the concentration of the drug in the
blood

• AUC is a measure of drug exposure

• Cmax is the maximum concentration



PK design



Proposed Design
Chapman et al. (2014)



Objective

To provide an optimal sparse sampling scheme

Requirements:

Non-compartmental - We must use non-compartmental
methods as much as possible

Robust - We must consider the performance of the
scheme across a range of scenarios
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Theoretical AUC

The theoretical AUC from 0 to
the last observed time point
for treatment k is

AUCk =

∫ tlast

0
µtkdt .
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Using the
linear trapezoidal rule

AUCk =
J∑

j=1

wjµtj k

The weights, wj , equal

w1 = 1
2 (t2 − t1)

wj = 1
2(tj+1 − tj−1)

wJ = 1
2(tJ − tJ−1)
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Example:
Bazzoli et al. (2010)

Our assumed model is a one-compartmental first order kinetics
with oral administration:

Yjn =
kanFD

Vn(kan − ken)
(e−kentj − e−kantj ) + εjn,

(for j = 1, . . . ,6 time points and n = 1, . . . ,10 subjects.)
The values of F and D are fixed
The other three parameters, V , ka and ke have exponential
random effects
The εjn are Normally distributed with constant coefficient of
variation



Two-stage procedure

• Two stages:

1. Choose the most appropriate time points
2. Given chosen time points, choose the sparse sampling

scheme

• The choices of time points ensure that we capture the most
important parts of the PK profile



Procedure:
Choosing Timepoints

1. Define a set of possible timepoints

2. Generate a large number of complete data sets from an
underlying model

3. Rank the timepoints based on distance from true model

4. Repeat for 2-3 for different models

5. Apply a Minimax criterion to the ranks to find the robust
optimal timepoint choice



Choosing Time Points

Figure: Measuring the difference between the population curve and the
simulated data at chosen time points.



Choosing Timepoints

• Distance dg,i at grid point g for simulated dataset i
• For a given choice of time points {tj}

Ψ({tj}) =
1
M

M∑
i=1

G∑
g=1

|dg,i |

• The best time point choice minimizes Ψ



Choosing Timepoints

In order to ensure that we have enough sampling points
around the predicted tmax , we split the sampling grid into
zones, and place restrictions on these zones.
For example:

Zone 1 : Choose 1 from {0.5}

Zone 2 : Choose 3 from {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}

Zone 3 : Choose 1 from {4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0,
8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5}

Zone 4 : Choose 1 from {12.0}



Choosing Time Points

Figure: Zones



Minimax Criteria

• Given P different scenarios

• Let R be defined as R({tj}υ,p) = Rp,υ, the rank of {tj}υ for
the pth scenario

• Then our robust choice of optimal design is the solution to:

arg min
{tj}υ

max
p

R({tj}υ,p).



Choosing Timepoints

Table: Time Point Choices

Top 5 Time Choices
225 260 235 224 234

8 Scenarios

1 (LLL) 21 24 13 16 18
2 (LLH) 13 12 22 20 27
3 (LHL) 39 35 22 28 21
4 (HLL) 32 36 45 42 52
5 (LHH) 40* 30 29 36 41
6 (HHL) 26 31 40 38 42
7 (HLH) 34 40* 50* 51* 55*
8 (HHH) 27 33 40 41 44

Max 40 40 50 51 55
Total 232 241 261 272 300



Choosing Timepoints

Figure: Zones



Procedure:
Choosing Sampling Scheme

1. Define a set of feasible sparse schemes

2. Generate a large number of complete data sets from an
underlying model

3. Rank the schemes based on chosen optimality criteria

4. Repeat 2-3 for different models

5. Apply the Minimax criteria to the ranks to find the robust
optimal scheme



Feasible Schemes

Animal number Sampling timepoint

#1 #2 #3 #4 #5 #6

1 7 7 7

2 7 7 7

3 7 7 7

4 7 7 7

5 7 7 7

6 7 7 7

7 7 7 7

8 7 7 7

9 7 7 7

10 7 7 7

n=5 n=5 n=5 n=5 n=5 n=5

• 10 subjects and 6 time points.
• Each subject is sampled at 3 time points
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• At each time point, 5 out of 10 subjects are sampled
• Schemes cannot be repeated



Optimility criteria

Ψ = Var( ̂PK parameter)

or a robust version

Ψ = w1 ∗Var(ÂUC) + (1− w1) ∗Var(Ĉmax),
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Does the criterion matter?

Figure: The relationship between ranks given to schemes using the
variances of ÂUC and Ĉmax



Minimax Criteria

Figure: Using timepoints (0.5, 1.0, 3.5, 4.0, 7.5, 12.0). Top 5 overall
schemes according to minimax criteria applied to equally weighted
scaled sum. Ranks for each of the eight scenarios are plotted.



Chosen Scheme

Table: Optimal Sparse Sampling Scheme. 7indicates that the individual
subject scheme is shared by the scheme from Chapman et al. (2014)
and ◦ indicates that it is not.

Animal number Sampling timepoint

#1 #2 #3 #4 #5 #6

1 ◦ ◦ ◦

2 ◦ ◦ ◦

3 ◦ ◦ ◦

4 7 7 7

5 ◦ ◦ ◦

6 7 7 7

7 7 7 7

8 7 7 7

9 7 7 7

10 7 7 7

n=5 n=5 n=5 n=5 n=5 n=5



Why bother?

• Variability in estimates reduced by up to 15%
(and about 3-5% against the Chapman et al (2014) design)

• Optimizing time points yields a further reduction of about 2.5%

• Optimal designs for NCA are frequently very different from
optimal designs for NLME models



Discussion

• Developed algorithms to find optimal designs for PK analysis
using non-compartmental methods

• Both algorithms can be shown to converge to true optimal
design

• Can be computationally expensive

• R package Pkdesign to be published soon
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