

YY LYY YY LYY

Global Drug Development (GDD) Advanced Methodology and Data Science

Kostas Sechidis

Associate Director Data Science, Advanced Exploratory Analytics

PSI Subgroup Analysis SIG Webinar 17th of November 2021

Agenda

- 1. Feature selection via machine learning methods
- 2. Quantifying uncertainty via knockoffs
- 3. Adapt the methods to identify predictive biomarkers
- 4. Case study in psoriatic arthritis trials

Feature selection

- One response Y: e.g. disease progression/status
- Thousands of variables X: e.g. genotype information, digital sensors ...

Feature selection

A feature is of interest (relevant) if: p(target|feature, other_features) ≠ p(target|other_features)

The optimal set $S \in \{X_1, ..., X_p\}$: $Y \perp \overline{S} \mid S$

- Actual set of relevant features $S = \{X_1, X_4, X_6, X_p\}$
- Predicted set of relevant features $\hat{S} = \{X_1, X_4, X_6, X_p, X_2\}$

 X_2 is a false discovery finding - the false discovery proportion is 1 out of 5 (20%)

Feature selection

Minimize $\sum_{i} (y_i - \sum_{j} x_{ij}\beta_j)^2$ subject to $\sum_{j} |\beta_j| \le s$ LASSO

Quantifying uncertainty via knockoffs

Panning for gold: 'model-X' knockoffs for high dimensional controlled variable selection

Emmanuel Candès, Yingying Fan, Lucas Janson 💌, Jinchi Lv

First published: 08 January 2018 | https://doi.org/10.1111/rssb.12265 |

1st step: Construct knockoffs (fake variables)

2nd step: Calculate a knockoff statistic

3rd step: Calculate a threshold to control FDR

Y	X_1	X_2		X_p
1.128	-0.300	0.416		-0.328
-0.725	-0.310	-0.568		-0.396
-0.107	-0.876	-1.689		-2.554
0.791	0.308	0.804		-0.515
0.233	-0.038	0.425		-1.015
-0.350	0.931	-1.041		0.818
-0.849	-1.402	0.472		-0.208
-0.386	0.215	-0.513		1.822
	1	÷ .	:	1
-0.350	0.931	-1.041		0.818

\tilde{X}_1	\tilde{X}_2		\tilde{X}_p
-0.120	-0.868		-1.396
0.132	-0.213		0.822
0.351	-1.441		0.218
-0.756	-1.289		-1.554
-0.330	0.216		-0.228
-1.293	0.172		-0.108
-0.032	0.422		-0.015
0.381	-1.104		0.218
:	:	:	:
0.808	0.048		-1.515

... extensions to FWER, PFER NOVARTIS | Reimagining Medicine

Knockoff filters

• 1st step: construct knockoff variables $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$ $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

2nd step: calculate a knockoff statistic **<u>Random forests</u>** $W_j^{\text{RF}} = |Z_{X_j}| - |Z_{\tilde{X}_j}|$ $X_1 X_2 X_3 X_4 X_5 X_6 X_7 \dots X_p \tilde{X}_1 \tilde{X}_2 \tilde{X}_3 \tilde{X}_4 \tilde{X}_5 \tilde{X}_6 \tilde{X}_7 \dots \tilde{X}_p Y$ **LASSO** $W_i^{\text{LASSO}} = |\widehat{b_{X_i}}(\lambda)| - |\widehat{b_{\tilde{X}_i}}(\lambda)|$ ML model 3rd step: Calculate a threshold to control FDR, eg FDR = 0.30 $\widehat{FDP}(t) = \frac{1 + |\{j: W_j \le -t\}|}{|\{j: W_j \ge t\}|} = 0.50$ |W| NOVARTIS | Reimagining Medicine

Knockoff filters

• 1st step: construct knockoff variables $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$ $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

2nd step: calculate a knockoff statistic **<u>Random forests</u>** $W_j^{\text{RF}} = |Z_{X_j}| - |Z_{\tilde{X}_j}|$ $X_1 X_2 X_3 X_4 X_5 X_6 X_7 \dots X_p \tilde{X}_1 \tilde{X}_2 \tilde{X}_3 \tilde{X}_4 \tilde{X}_5 \tilde{X}_6 \tilde{X}_7 \dots \tilde{X}_p Y$ **LASSO** $W_i^{\text{LASSO}} = |\widehat{b_{X_i}}(\lambda)| - |\widehat{b_{\tilde{X}_i}}(\lambda)|$ ML model 3rd step: Calculate a threshold to control FDR, eg FDR = 0.30 $\widehat{FDP}(t) = \frac{1 + |\{j: W_j \le -t\}|}{|\{j: W_j \ge t\}|} = 0.33$ $|W| \underset{\text{NOVARTIS}}{\bigcup} | \underset{\text{Reimagining Medicine}}{\text{NOVARTIS}} |$ * * **

Knockoff filters

• 1st step: construct knockoff variables $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$ $(X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3) \stackrel{d}{=} (X_1, X_2, X_3, \tilde{X}_1, \tilde{X}_2, \tilde{X}_3)$

Using knockoffs in clinical trial datasets

Target variable

1st step: Construct knockoffs (fake variables)
2nd step: Calculate a knockoff statistic
3rd step: Calculate a threshold to control FDR

prognostic markers

Reimagining Medicine

From FS to predictive biomarker discovery

UNOVARTIS | Reimagining Medicine

EGFR: Epidermal Growth Factor Receptor

From FS to predictive biomarker discovery

 $T = 1 \checkmark$ $T = 0 \checkmark$

Knockoffs for predictive biomarker discovery

 $S^{\text{Pred.}}$: the actual set of predictive biomarkers $\mathcal{H}_0^{\text{Pred.}}$: the actual of non-predictive

 $\hat{\mathcal{S}}^{\operatorname{Pred.}}$: the set of biomarkers selected as predictive

- 1st step: Construct knockoffs SAME AS BEFORE
- 2nd step: Calculate a knockoff statistic NOVEL METHODS
- 3rd step: Calculate a threshold to control FDR SAME AS BEFORE

Filter 1: Using LASSO regression coefficients of the treatment interaction terms

$$\mathbb{E}(Y|X = \mathbf{x}, T = t) = \alpha t + \beta \mathbf{x} + \mathbf{\hat{\gamma}} t \mathbf{x}$$

$$[\mathbf{t}, \mathbf{X}, \mathbf{\tilde{X}}, \mathbf{t} : \mathbf{X}, \mathbf{t} : \mathbf{\tilde{X}}]$$

$$\hat{\mathbf{b}}(\lambda) = \operatorname{argmin}_{\mathbf{b}} \left\{ \frac{1}{2} \| \mathbf{y} - [\mathbf{t}, \mathbf{X}, \mathbf{\tilde{X}}, \mathbf{t} : \mathbf{X}, \mathbf{t} : \mathbf{\tilde{X}}] \mathbf{b} \|_{2}^{2} + \lambda \| \mathbf{b} \|_{1} \right\}$$

$$W_{j}^{\text{INT-LCD}} = |\hat{\gamma}_{j}(\lambda)| - |\hat{\gamma}_{j}(\lambda)|$$

$$\mathbf{b} = [\alpha, \beta, \widetilde{\beta}, \gamma, \widetilde{\gamma}]$$

Filter 2: Using importance scores derived from causal forest

X, X Tree 2 Tree 3 Tree 1 $W_i^{\rm CF} = Z_i^{\rm CF} - \tilde{Z}_i^{\rm CF}$ **Random forest** - estimate $\mu(x_i) = E[Y|X = x_i]$ **Causal forest** – estimate $\tau(x_i) = E[Y^{(1)} - Y^{(0)}|X = x_i]$, known as conditional average treatment effect NOVARTIS **Reimagining Medicine** 16

Simulation studies

(a) Knockoff filters *control FDR* to the nominal value

(b) *LASSO* filter *more powerful* when there are only *linear interactions* between features

(c) *CF* filter *more powerful* when there are *nonlinear interactions* between features

NVS case study: Psoriatic arthritis (PsA)

- Psoriatic arthritis (PsA) is an inflammatory disease that affects many areas of the body and is associated with impaired physical function and poor QofL
- Cosentyx (secukinumab) is indicated for the treatment of adult patients with active psoriatic arthritis and has been tested in various clinical trials.
- **Four Phase III trials** were analysed: FUTURE 2-5

Trial/ Dose	Placebo	75 mg	150 mg NL	150 mg	300 mg	Total
FUTURE2 (NCT01752634)	98	99	0	100	100	397
FUTURE3 (NCT01989468)	137	0	0	138	139	414
FUTURE4 (NCT02294227)	114	0	113	114	0	341
FUTURE5 (NCT02404350)	332	0	222	220	222	996
Total	681	99	335	572	461	2148

https://doi.org/10.1007/s40267-021-00814-5

Primary endpoint is a binary composite score ACR50 in week 16, which considers the number of tender and swollen joints but also includes patient/physician global assessment as well as pain and functional ability.

Predictive markers by controlling FDR = 20%

- **C-reactive protein**
- Age
- **Fatigue score**
- Sex
- **Body Surface Area**
- **Psoriasis Nail Subset**
- **Asymmetric Peripheral**
- **Polyarticular Arthritis**
 - 19

1	1	1	1	1
0	0.1	0.2	0.3	0.4
	Causal	Risk	Difference	(CRD)

Conclusions and future directions

- Knockoffs provide a framework for ML based controlled discoveries
- Our work used knockoffs for controlled predictive biomarker identifications
- We are currently using that methods for omics based discoveries

YXXYXXXXX \mathbf{x} **YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYXYXXYYY **XXXXXXXXXX YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{Y} **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYYYYYYYY **XXXXXXXXXX** YYJYYJYYYY JYYJYYJYJY YYJYYJYYY **YXXYXXXXX** \mathbf{x} **YXXYXXXXX** YYXYXXYYY LYYLYYLYL YYYYYYYYY LYYLYYLYL YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX** XYXXYXXXX YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY

Thank you