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Causal Inference

Do they sound ridiculous? How about:
“I took an aspirin and my headache went away - the drug
worked!”

In this talk, we will develop insight by explicitly
distinguishing association from causation.

What is the effect of consuming more chocolate?

So the question is: what are we actually trying to estimate,
and when does association imply causation?
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Estimands first!

In this talk, we will introduce measures of causal effect,
so-called causal estimands.

This is the first step in a causal analysis.

This may sound obvious, but it is not.

For a statistician / data scientist, the first step is often
formulating a model / algorithm.
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A wrong first step

ICH E9 (FDA and EMA, 1998) and EMA (2015) guidelines
are written with the understanding that the target treatment
effect is a model parameter; e.g.,

g{E (Y |Z ,X )} = β0 + β1Z + β2X

where g(·) is a pre-specified link function.

This model implies no interaction between Z and X :

A statistical modelling assumption, not implied by
randomization.

When the model is misspecified, the standard likelihood-based
estimators of β1 may not generally target a causal effect.

8 / 49



A wrong first step

ICH E9 (FDA and EMA, 1998) and EMA (2015) guidelines
are written with the understanding that the target treatment
effect is a model parameter; e.g.,

g{E (Y |Z ,X )} = β0 + β1Z + β2X

where g(·) is a pre-specified link function.

This model implies no interaction between Z and X :

A statistical modelling assumption, not implied by
randomization.

When the model is misspecified, the standard likelihood-based
estimators of β1 may not generally target a causal effect.

8 / 49



Why estimands first?

Causal estimands translate the scientific question
into a quantity that we can (hopefully) communicate
well to clinicians/investigators/. . . .

Models and algorithms are only tools to learn an estimand,
but should never be the primary aim of a causal analysis.

In this talk, we will introduce popular causal estimands
and study how to identify them from data.
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Causal inference road map

Road map for inferring causal effects

1 Defining the estimand

2 Stating the identification assumptions

3 Estimation method(s) along with statistical assumptions

Despite the many positive steps, statisticians often tend to go
straight to Step 3.

In my opinion, we should strive to fully follow this road map
to achieve the most benefits.
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A simple example

18 subjects each suffer a headache.

Some take a potion; others don’t.

One hour later, we ask each of the 18
whether or not his/her headache has disappeared.
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The observed data (1)

Z Y
(potion (headache
taken?) disappeared?)

Fay 0 1
George 0 1
Tom 0 1
Mary 0 1
Chris 0 0
Anna 0 0
Rose 1 1
Jack 1 1
Lee 1 1
Adam 0 1
John 0 0
Ian 0 0
Betsy 1 1
Claus 1 1
Sara 1 1
Lisa 1 1
Peter 1 0
Sue 1 0
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The observed data (2)

Z Y
(potion (headache
taken?) disappeared?)

Fay 0 1
George 0 1
Tom 0 1
Mary 0 1
Chris 0 0
Anna 0 0
Rose 1 1
Jack 1 1
Lee 1 1
Adam 0 1
John 0 0
Ian 0 0
Betsy 1 1
Claus 1 1
Sara 1 1
Lisa 1 1
Peter 1 0
Sue 1 0

Sara took the potion,
and her headache disappeared.

Did the potion cause her headache
to disappear?

We don’t know.

To answer this,
we need to know what would have
happened
had she not taken the potion.
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Counterfactuals and potential outcomes

Write Y 0 and Y 1 to represent the potential outcomes under
both treatments.1

Y 0 is the outcome which would have been seen had the
potion NOT been taken.

Y 1 is the outcome which would have been seen had the
potion been taken.

One of these is observed: if Z = 0, Y 0 is observed; if Z = 1,
Y 1 is observed.

The other is counterfactual.

Suppose that we can observe the unobservable. . .

1Some use Y (0) and Y (1)
15 / 49



The ideal data

Y 1 Y 0

Fay 1 1
George 1 1
Tom 1 1
Mary 1 1
Chris 1 0
Anna 1 0
Rose 1 1
Jack 1 1
Lee 1 0
Adam 1 1
John 1 0
Ian 0 0
Betsy 1 1
Claus 1 1
Sara 1 0
Lisa 1 0
Peter 0 0
Sue 0 0

For Sara, the potion did have a causal effect.

She did take it, and her headache
disappeared;
but had she not taken it,
her headache would not have disappeared.

Thus the potion had a causal effect on her
headache.

What about Fay?

and Chris?

and Ian?
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The fundamental problem of causal inference

Back to reality. . .

Z Y Y 1 Y 0

Fay 0 1 ? 1
George 0 1 ? 1
Tom 0 1 ? 1
Mary 0 1 ? 1
Chris 0 0 ? 0
Anna 0 0 ? 0
Rose 1 1 1 ?
Jack 1 1 1 ?
Lee 1 1 1 ?
Adam 0 1 ? 1
John 0 0 ? 0
Ian 0 0 ? 0
Betsy 1 1 1 ?
Claus 1 1 1 ?
Sara 1 1 1 ?
Lisa 1 1 1 ?
Peter 1 0 0 ?
Sue 1 0 0 ?

In reality, we never observe both Y 0 and Y 1

on the same individual.

Sometimes called
the fundamental problem of causal
inference.

It is therefore over-ambitious
to infer anything about individual-level causal
effects.

17 / 49



The fundamental problem of causal inference

Back to reality. . .

Z Y Y 1 Y 0

Fay 0 1 ? 1
George 0 1 ? 1
Tom 0 1 ? 1
Mary 0 1 ? 1
Chris 0 0 ? 0
Anna 0 0 ? 0
Rose 1 1 1 ?
Jack 1 1 1 ?
Lee 1 1 1 ?
Adam 0 1 ? 1
John 0 0 ? 0
Ian 0 0 ? 0
Betsy 1 1 1 ?
Claus 1 1 1 ?
Sara 1 1 1 ?
Lisa 1 1 1 ?
Peter 1 0 0 ?
Sue 1 0 0 ?

In reality, we never observe both Y 0 and Y 1

on the same individual.

Sometimes called
the fundamental problem of causal
inference.

It is therefore over-ambitious
to infer anything about individual-level causal
effects.

17 / 49



The fundamental problem of causal inference

Back to reality. . .

Z Y Y 1 Y 0

Fay 0 1 ? 1
George 0 1 ? 1
Tom 0 1 ? 1
Mary 0 1 ? 1
Chris 0 0 ? 0
Anna 0 0 ? 0
Rose 1 1 1 ?
Jack 1 1 1 ?
Lee 1 1 1 ?
Adam 0 1 ? 1
John 0 0 ? 0
Ian 0 0 ? 0
Betsy 1 1 1 ?
Claus 1 1 1 ?
Sara 1 1 1 ?
Lisa 1 1 1 ?
Peter 1 0 0 ?
Sue 1 0 0 ?

In reality, we never observe both Y 0 and Y 1

on the same individual.

Sometimes called
the fundamental problem of causal
inference.

It is therefore over-ambitious
to infer anything about individual-level causal
effects.

17 / 49



Population-level causal effects

A less ambitious goal is to focus on the population-level or
average causal effect:

E
(
Y 1 − Y 0

)
or

E
(
Y 1

)
E (Y 0)

.

We can also define causal effects in a subpopulation,
e.g. the treated:

E
(
Y 1 − Y 0 |Z = 1

)
or, for precision medicine, in strata defined by pre-treatment
characteristics X :

E
(
Y 1 − Y 0 |X

)
18 / 49



Summary so far...

We now have notation
to distinguish causation

E
(
Y 1 − Y 0

)
or

E
(
Y 1

)
E (Y 0)

from association:

E (Y |Z = 1)− E (Y |Z = 0) or
E (Y |Z = 1)

E (Y |Z = 0)
.

Historically, this has been key
to the development of methods for causal inference.
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causation ̸= association? (1)

Consider a randomized trial

In real life, patients are randomized to only one group.

Randomization ensures that causal contrasts correspond to
statistical contrasts:

E
(
Y 1

)
− E

(
Y 0

)
= E (Y |Z = 1)− E (Y |Z = 0).
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causation ̸= association? (2)

So, do we need to care about the question whether
causation ̸= association in a randomized trial?

Yes!

Randomization can be broken

due to intercurrent events,
missing data, or

when interest lies in generalizing trial results.

21 / 49



causation ̸= association? (2)

So, do we need to care about the question whether
causation ̸= association in a randomized trial?

Yes!

Randomization can be broken

due to intercurrent events,
missing data, or

when interest lies in generalizing trial results.

21 / 49



causation ̸= association? (2)

So, do we need to care about the question whether
causation ̸= association in a randomized trial?

Yes!

Randomization can be broken

due to intercurrent events,
missing data, or

when interest lies in generalizing trial results.

21 / 49



causation ̸= association? (3)

In that case, we are in a similar situation as an observational
study. . .

Id X Z Y Y 1 Y 0

Fay 0 0 1 1 1
George 0 0 1 1 1
Tom 0 0 1 1 1
Mary 0 0 1 1 1
Chris 0 0 0 1 0
Anna 0 0 0 1 0
Rose 0 1 1 1 1
Jack 0 1 1 1 1
Lee 0 1 1 1 0
Adam 1 0 1 1 1
John 1 0 0 1 0
Ian 1 0 0 0 0
Betsy 1 1 1 1 1
Claus 1 1 1 1 1
Sara 1 1 1 1 0
Lisa 1 1 1 1 0
Peter 1 1 0 0 0
Sue 1 1 0 0 0

P(Y 1 = 1)

P(Y 0 = 1)
=

15/18

9/18
=

5

3

P(Y = 1|Z = 1)

P(Y = 1|Z = 0)
=

7/9

5/9
=

7

5
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Fundamental problem of causal inference

Since we don’t know Y 1 for every subject,
we can’t easily estimate E

(
Y 1

)
as the proportion of all

subjects with Y 1 = 1.

Likewise, we can’t simply calculate E
(
Y 0

)
as the proportion

of all subjects with Y 0 = 1.

Our task is therefore to choose quantities from the observed
data
(i.e. involving Z , Y and other observed variables)
that represent reasonable substitutes for hypothetical
quantities such as E

(
Y 1 − Y 0

)
.2

2Note that we know how to do this when randomization is not broken in an
RCT.
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The consistency assumption

So far, we have implicitly used that:

Z = z ⇒ Y z = Y

in order to link counterfactuals to the observed data.

This may appear logical, but is nonetheless called an
assumption:
the consistency assumption.

The reason is that we define ‘causal effects’
as expressing what would happen under hypothetical
interventions,
but no interventions may have been considered in the study.

26 / 49



Example: the effect of weight loss

What is meant by the effect of weight loss on mortality?

If Z = 1 means weight loss, then does Y 1 = Y for those with
Z = 1?

27 / 49



What does weight loss mean? (1)

There are many different versions of weight loss:

Does losing 10 kg of weight prolong life?

Does losing 10 kg of weight by age 40,
and maintaining that weight loss between ages 40 and 50
prolong life?

Does losing 10 kg of weight by age 40,
and maintaining that weight loss between ages 40 and 50 via
restricted caloric intake
prolong life?

Does losing 10 kg of weight by age 40,
and maintaining that weight loss between ages 40 and 50 via
restricted caloric intake
and physical exercise prolong life?

...
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What does weight loss mean? (2)

We could go on forever... and will never be satisfied.

Quantitative statements such as

‘Intentional weight loss had a small benefit for individuals with

obesity-related risk factors (RR 0.87 (95% CI 0.77, 0.99); P = 0.028) ...’

are therefore very difficult to understand:
unclear precisely what intervention on weight is considered.

If our interest was in quantifying the effect of weight loss via
physical exercise,
the study will not help when participants lost weight via
gastric bypass.

The consistency assumption:

Z = z ⇒ Y z = Y

then fails.
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Exchangeability (1)

What might be a good substitute for E
(
Y 1

)
?

What about E (Y |Z = 1)?

This is the proportion whose headache disappeared
among those who actually took the potion.

Is this the same as E
(
Y 1

)
?

Only if those who took the potion are exchangeable with
those who didn’t.
Mathematically, Z ⊥⊥ Y 0 and Z ⊥⊥ Y 1.

This would be the case
if the choice to take the potion was made at random.

This is why ideal randomised experiments
are the gold standard for inferring causal effects.
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Exchangeability (2)

With exchangeability, analyses of randomised experiments
return causal effects

E (Y 1 − Y 0) = E (Y 1)− E (Y 0)

= E (Y 1|Z = 1)− E (Y 0|Z = 0)

= E (Y |Z = 1)− E (Y |Z = 0)

The righthand side is obtainable by taking the difference of the
mean of the outcomes (Y ) in each arm (Z = 1 and Z = 0).
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Conditional exchangeability (1)

In observational data (or RCT with intercurrent events),
exchangeability is usually implausible.

Those with a worse headache
are probably more likely to take the potion.

Suppose we asked each subject at the beginning of the study:
“is your headache severe?”.

Then, we might propose that,
after taking severity into account,
the decision as to whether or not to take the potion was
effectively taken at random.
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Conditional exchangeability (2)

Suppose X denotes severity.

Then, under this assumption, within strata of X ,
the exposed and unexposed subjects are exchangeable.

This is called conditional exchangeability (given X ).
Mathematically, Z ⊥⊥ Y 0|X and Z ⊥⊥ Y 1|X .

We can’t check this from our data;
we need to believe it from a priori knowledge.
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Conditional exchangeability (3)

With conditional exchangeability, regression delivers
conditional causal effects

E (Y 1 − Y 0|X ) = E (Y 1|X )− E (Y 0|X )

= E (Y 1|Z = 1,X )− E (Y 0|Z = 0,X )

= E (Y |Z = 1,X )− E (Y |Z = 0,X )

It follows that the marginal causal effect equals

E (Y 1 − Y 0) = E {E (Y |Z = 1,X )− E (Y |Z = 0,X )}
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Basis for G-computation

Step 1: Model fitting
Fit a model for E (Y |Z ,X )

E.g., P(Y = 1|Z ,X ) = logit−1(γ0+γ1 ·Z +γ2 ·X +γ3 ·Z ·X ).

Step 2: Predicting
Use this model to impute outcome under treatment (Z = 1)
and control (Z = 0) for all patients:

Id X Z Y Y 1 P̂1 Y 0 P̂0

Fay 0 0 1 ? 0.6 1 0.5
Rose 0 1 1 1 0.7 ? 0.5
Adam 1 0 1 ? 0.8 1 0.7
Lisa 1 1 1 1 0.8 ? 0.7
...

...
...

...
...

...
...

...

Step 3: Averaging
Take the average of imputed outcomes, and calculate
treatment effect of interest: 1

n

∑n
i=1 P̂

1
i − 1

n

∑n
i=1 P̂

0
i .
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The hazards of hazard ratios

It is common to measure the effect of a randomized treatment
Z on a time-to-event endpoint T in terms of the hazard
ratio:

P(T = t|T ≥ t,Z = 1)

P(T = t|T ≥ t,Z = 0)

By randomization, we have exchangeability.

This allows us to re-express the hazard ratio as

P(T 1 = t|T 1 ≥ t)

P(T 0 = t|T 0 ≥ t)

Note that this continues to be an apple versus orange
comparison,
except under the null.
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Positivity (1)

Positivity assumption

Conditional on covariates X , there is a probability greater than
zero of being assigned to each of the treatment levels

0 < P(Z = 1|X ) < 1 with probability 1

Here, X is a set of variables that satisfies exchangeability

Important that there is variability in treatment assignment
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Positivity (2)

In RCTs, positivity is usually guaranteed by design for the
randomized treatment of interest.

The protocol will specify the assignment mechanism,
meaning that P(Z = 1|X ) is known.

Not always realistic in observational studies or RCTs with
intercurrent events (see later).

Even when this assumption holds,
unstable estimates are typically obtained when it is nearly
violated.
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Trial Setting

Population: Patients with Type 2 diabetes.

Treatment: Assignment to active treatment (Z = 1) vs
placebo (Z = 0).

Outcome variable: Change in HbA1c from baseline to week
36.

Intercurrent events: Use of rescue medication.

Strategy: Will discuss two settings; treatment policy and
hypothetical strategy.

Population summary: later

Z ∈ {0, 1} is randomized with P(Z = 1) = p1
p1 ∈ (0, 1) is some fixed constant.
Non-stratified randomziation between Z = 0, 1.
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“Intention-to-treat Analysis”

Strategy: Use outcome values regardless of discontinuation or use
of rescue medication (i.e., treatment policy strategy).

Population summary: E (Y 1 − Y 0).

Consistency (Y z
i = Yi for every individual with Zi = z):

Ensured through a proper definition of treatments (e.g., dose,
frequency, route of administration)

Exchangeability (Y z ⊥⊥ Z ):

Random process for treatment assignment does not depend on
any covariates/confounders or on potential outcomes.

Positivity:
P(Z = 1) = p1 > 0 and P(Z = 0) = 1− p1 > 0.
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Causal vs Statistical Assumptions

Suppose interest lies in estimating the conditional (causal)

contrasts: E(Y 1|X=x)/{1−E(Y 1|X=x)}
E(Y 0|X=x)/{1−E(Y 0|X=x)} .

For a binary outcome Y , it is common to fit

logit{E (Y |Z ,X )} = β0 + β1Z + β2X .

Statistical modelling assumption: no interaction between Z
and X on the linear scale

Not implied by randomization.

When the model is misspecified, the standard likelihood-based
estimators of β1 may not generally target either

E(Y 1|X=x)/{1−E(Y 1|X=x)}
E(Y 0|X=x)/{1−E(Y 0|X=x)} or E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)} .
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A Hypothetical Estimand (1)

Strategy: outcome value of interest is the value that would have
been observed if no one would start rescue medication (i.e.,
hypothetical strategy).

Let S denote switching status: S = 1 for switchers, and 0
otherwise.

Population summary: E (Y Z=1,S=0 − Y Z=0,S=0).

Consistency (Y z,s
i = Yi for every individual with Zi = z and Si = s):

Ensured through a proper definition of treatments and
(switching to) rescue medication.

Conditional exchangeability (Y z,s ⊥⊥ S |X ,Z = z):

Depends on whether all variables which explain Y z,s given X
and Z are measured.

Positivity: often not realistic.
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A Hypothetical Estimand (2)

Often not realistic.

No similar patients who did and did not receive rescue
medication,
esp. in case of deterministic rules in the protocol

Most estimands and estimators are developed for settings
without deterministic rules,
but they are used in these settings!
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Thank you for your attention!

E-mail: kelly.vanlancker@ugent.be
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