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Assay Qualification: measurement accuracy

We expect a measure to be: Precise + True = Accurate
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Assay Qualification: Introduction

Aim of qualification

- the analytical method is suitable for its intended use

- consequently to prove the reliability of the results obtained

Qualification statistics considered

- Precision

- Trueness

- Accuracy 

Experimental design

- Multiple replicates per sample

- Multiple days / operators / sessions

- Series dilutions of a spiked-in sample or known concentrations
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Assay Qualification: Precision, Trueness, Accuracy

Precision Trueness Accuracy

Meaning Random error Systematic Error Total error

Related to Method variability Method bias
Total deviation from 

nominal value

Quantified by CV or STD CI
Confidence

Interval

PI or TI
Prediction or 

Tolerance
Interval

+ =
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The study design is composed of:

• 2 different reagents (R1, R2)

• 4 operators (B, D, S, W): random variable

• 3 days (D1, D2, D3): random variable

• 2 replicates

• 4 nominal concentrations (25, 50, 75, 100) (µl):       fixed variable

Assay Qualification: Data Set

Crossed
Random Variables

+

= Mixed Model
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Assay Qualification: Data Set Visualisation
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Assay Qualification: Mixed Models Concept

𝐶𝑉 =
𝜎்

𝜇 + 𝛼ଵ

𝐶𝑉 =
𝜎்

𝜇 + 𝛼ଶ
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Confidence Interval concept

100 simulated 95% CI for the mean 𝜇

 The true value, 𝜇, lies in 95% of the CIs

Note: in Bayesian statistics, credible intervals are usually used
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Prediction Interval concept

100 simulated 95% PI for a future observation

Note: in Bayesian statistics, PI can be obtained from the posterior distribution

 The « future » observation lies into 95% PIs
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Expectation Tolerance Interval (type I) concept

100 simulated 95% (beta)-expectation TI

 Expectation TI covers 95% of the population, on average

True 95% Interval
𝜇 ± 1.96 𝜎

Average
= 95%Coverage
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Confidence Interval of Confidence Interval

• The prediction interval is sometimes referred as “confidence 
interval for a future observation” (JMP)

• Will the PI contain less or more than 95% of future 
observations?

 Some researchers calculate the 95% CI for each 
bound of the 95% PI

• (unfortunately) widely used in method comparison studies 
(bridging studies) with Bland-Altman plot

• This is awkward, confusing and misleading

• Use the Tolerance Interval type II
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Content Tolerance Interval (type II) concept

100 simulated 95% content TI (90% confidence)

90 TIs covers at least 95% of the population
10 TIs covers at most 95% of the population

True 95% Interval
𝜇 ± 1.96 𝜎

Coverage 95%
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Equal-Tailed Tolerance Interval (type III) concept

100 simulated 95% Equal-Tailed TI

 95% Equal-Tailed TI includes both quantiles 2.5% and 97.5%

True 95% Interval
𝜇 ± 1.96 𝜎
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Confidence, Prediction, Tolerance

When the sample size increases

• CIs collapse to the point estimate

• PIs and TIs move closer to the true 
quantiles
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A Tutorial on Tolerance Intervals

TUTORIAL IN BIOSTATISTICS

To tolerate or to agree: A tutorial on tolerance intervals in 
method comparison studies with BivRegBLS R Package
Bernard G Francq, Marion Berger, Charles Boachie

Statistics in Medicine, 2020.
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Confidence intervals are used to assess the trueness
• The degrees of freedom are typically calculated by Kenward-Roger (KR) method

• A plot can be displayed with the CIs calculated at the different level of concentrations

Prediction Intervals (PIs) are used to assess the accuracy
• The uncertainty of the prediction is the sum of the total variance and the uncertainty on the ‘mean’: 

systematic error (Trueness) + random error (Precision)

• An accuracy profile can be displayed with the PIs calculated at the different level of concentrations

Remarks: PIs in mixed models are not implemented in most of stat software
• SAS: pred and predm options are confidence intervals, no option for PI

• JMP: no explicit option, but “save prediction” option (in fit model) uses KR

• R: no direct analytical solution, not implemented in varComp, lmer, …

• Practitioners usually perform bootstrap (but is time-consuming)

• Bayesian approach

Assay Qualification: Confidence, Prediction, Tolerance
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Mixed Model Maximum Likelihood (REML)

How to compute the variance-covariance matrix of:

• Fixed effects (β)

• Random effects (γ)

• Variance components (θ)

Summary

Variance - Covariance matrix of (𝛽, 𝛾, 𝜃)

=
𝐶መଵଵ 𝐶መ′ଶଵ

𝐶መଶଵ 𝐶መଶଶ

0
0

0 0 2𝐻ିଵ

where H is the Hessian matrix

What is the difference between the univariate and the mixed models to calculate a prediction interval (accuracy)?

(nearly) none! Except the degrees of freedom
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Prediction Interval in Linear Mixed Model

The most commonly used formula for the PI (or Expectation TI) is given for a 1-random factor model

• where 𝜇ො is the intercept

• 𝑁𝑒 is the ‘effective sample size’

• 𝜎ො்
ଶ the total variance

• The degrees of freedom are calculated with the Satterthwaite approximation on the mean squares

Improvement

• We need a generalized formula for a wide variety of designs

• One random factor, nested and crossed designs for multiple random factors, balanced or unbalanced 
designs
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Prediction Interval in Linear Mixed Model

We propose to calculate the PI (or β-expectation TI) for a given linear combination of fixed effects as :

• the degrees of freedom, 𝑟, are calculated with the generalized Satterthwaite method

• The variance of the total variance is obtained from the Hessian matrix

Our generalized formula includes (is equivalent to) the specific 1-random model PI
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Parametrization in Linear Mixed Model for PI

𝜇

𝜇

𝛼ଵ

𝛼ଶ

𝛼ଷ

𝛼ଵ

𝛼ଶ

𝛼ଷ

Reference level
= overall (unweighted) mean

 JMP

Reference level
= a given level fixed effect

 SAS, R,…

𝛼ଵ

𝛼ଶ

𝛼ଷ

Cell means model
(no intercept)

Fixed effects

• Cell means model (no intercept)
• Combine all fixed effects into 1 variable

Random effects

• Reflect the actual design
of experiments (no simplification)

• Omitting or combining random effects
can underestimate the total variance
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Accuracy – 1 random variable - Coverage Probabilities 95% PI

Francq-Lin-Hoyer
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Accuracy – 2 random variables - Coverage Probabilities 95% PI

Francq-Lin-Hoyer Francq-Lin-Hoyer
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Tolerance Interval in linear mixed model

The (content) TI for a given level of fixed effects 
is obtained by the MLS (Modified Large 
Sample) method
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Tolerance Interval – 1 random variable - Coverage Probabilities
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Assay Qualification - Results



Target recovery = 100%

Confidence Interval = CI

• The interpretation is usually confusing and holds only for the average

Prediction Interval = PI

• The future (next) measure is expected to deviate between 97.2 and 105.4 (with 95% confidence)

Expectation Tolerance Interval = TI type I

• 95% of the future measurements are expected to deviate between 97.2 and 105.4 (on average)

Content Tolerance Interval = TI type II

• At least 95% of the future measurements will deviate between 96.9 and 105.6 (with 90% confidence)

Remarks

97.2   105.4100.5   102.1
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Assay Qualification - Interpretation

• The interpretation of PI and TI is similar in frequentist or Bayesian
• Their interpretation remains identical with/without the log transformation

Recovery

Reagent 2, Conc 1 96.9       105.6
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Tolerance Intervals, Quantiles, 1 + 1 = 2 ?

Few remarks:

• 2 ‘1-sided’ and 1 ‘2-sided’ TI are not the same !

• 90% 1-sided TI 95% coverage = 90% CI for the quantile 95%

• Content 2-sided TI ≠ Estimation of 2 quantiles

• Equal-tailed 2-sided TI = Estimation of 2 quantiles with an overall 95% Confidence level
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Tolerance Intervals and Out-Of-Specification

Few remarks:

• The Probability of out-of-specification (POOS) 
estimation is identical to TI

• The POOS is its upper bound is more 
straightforward to calculate in mixed models
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Bayesian Mixed Models

Bayesian analyses have many advantages

• Prior knowledge

• Get posterior distribution

• Straightforward for “complex” statistics

Examples

• Bayesian Tolerance Intervals

See courses “Introduction to computational Bayesian methods for CMC”

by José G. Ramírez (AMGEN) and Fang Chen (SAS). IQ pharma (2021)

• Coefficient of Variation
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Frequentist Mixed Models: CV (Coefficients of Variation)

CVs are used to assess the precision

• Frequentist 95% CI are calculated from an adaptation of the modified McKay formula

In mixed models

• The CV is calculated per variance components

• Total variance = Intermediate Precision

• The mean is replaced by the fixed effects estimate (i.e., intercept)

Under normality assumption

CI for CV (from McKay formula)
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Bayesian Mixed Models: CV (Coefficients of Variation)

In Bayesian mixed models, the CV can be obtained from the posterior distribution with MCMC simulations, by 
95% credible or HPD intervals

1-way random (operator) model

PROC MCMC DATA = Set3 NBI = 10000 NMC = 10000 STATISTICS = Intervals;
PARMS B0 S2;
PARMS S2op 1;
PRIOR B0  ~ normal(0, var=1e6);
PRIOR S2 ~ igamma(0.01, scale = 0.01);   or half-Cauchy distribution
prior S2op ~ igamma(0.01, scale = 0.01);   or half-Cauchy distribution
random Gamma ~ normal(0, var = S2op) subject = op;
Mu = B0 + Gamma;
S2tot = S2op + S2;
cvtot = sqrt (S2 + S2op) / B0;
MODEL resp ~ normal(Mu, var = S2);

RUN;



32

Bayesian Mixed Models: CV (Coefficients of Variation)
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USP: concatenate the random effects

One random variableMixed Model
(crossed or nested)
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Concatenate the random effects

STATISTICS IN BIOPHARMACEUTICAL RESEARCH
2020, VOL. 12, NO. 3, 262-272
Confidence and Prediction in Linear Mixed Models: 
Do Not Concatenate the Random Effects. 
Application in an Assay Qualification Study
Bernard G Francq, Dan Lin, Walter Hoyer

In the pharmaceutical industry, all analytical methods
must be shown to deliver unbiased and precise results. In
an assay qualification or validation study, the trueness,
accuracy, and intermediate precision are usually assessed
by comparing the measured concentrations to their
nominal levels. Trueness is assessed by using Confidence
Intervals (CIs) of mean measured concentration, accuracy
by Prediction Intervals (PIs) for a future measured
concentration, and the intermediate precision by the total
variance.
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Total Variance (Intermediate Precision): simulations
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Trueness (Confidence Intervals): simulations
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Accuracy (Prediction Intervals): simulations
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Concatenate or not ?

When the random variables are concatenated
• the bias of the total variance soar and may exceeds 20% bias

• the trueness (95% CI) collapse and drop to 70%

• the accuracy (95% CI) collapse and drop lower than the nominal level

 The power will be over-optimistic when designing a new qualification study by concatenating 
the random variables
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USP example revisited

Assay qualification study
• 2 crossed random effects model

• 3 analysts

• 3 equipments

• 3 measures 

• 27 total number of experiments

• Y = relative measurement error expressed as a percentage of introduced concentration

• ± 5% for Trueness

• ± 10% for Accuracy

• Guidelines recommend to concatenate the random effects, and obtain then 9 ‘treatments’
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USP example revisited

The intermediate precision is under-estimated by 13%
Biased estimate = 2.423 versus unbiased = 2.783

Widths CI and PI = 1.918 and 6.798 versus 6.282 and 8.988
 CI is 3.3-fold narrower
 PI is 1.3-fold narrower
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USP example revisited: the V matrix
Correct V matrix

Estimated V matrix

USP V matrix

By concatenating

the random variables
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GSK example

Assay qualification study
• 2 nested random effects model on assay validation - Unbalanced

• 9 analyst (3 per day)

• 3 days

• 3 concentrations

• 2 measures 

• 54 – 3 = 51 total number of experiments

• ± 7% for Accuracy
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GSK example
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The V matrix

Correct V matrix

Estimated V matrix

USP V matrix

By concatenating

the random variables



45

Confidence, Prediction, Tolerance in Linear Mixed Models

RESEARCH ARTICLE

Confidence, Prediction, and Tolerance
in Linear Mixed Models
Bernard G Francq, Dan Lin, Walter Hoyer
Statistics in Medicine, 2019.

The literature about Prediction Interval (PI) and Tolerance 
Interval (TI) in linear mixed models is usually developed for 
specific designs, which is a main limitation to their use.

This paper proposes to reformulate the two-sided PI to be 
generalizable under a wide variety of designs (one random 
factor, nested and crossed designs for multiple random 
factors, and balanced or unbalanced designs).

Finally, these CIs, PIs, and TIs are applied to two real data sets: 
one from orthopedic surgery study (intralesional resection 
risk) and the other from assay validation study during vaccine 
development.
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R versus SAS

PROC MIXED DATA=qualification ASYCOV NOPROFILE;
CLASS operator day ;
MODEL resp = &fixed / SOLUTION CL  DDFM=KR &NOINT ALPHA = 0.05; 
RANDOM operator day operator*day;
BY concentration;

RUN; 

library(varComp) # Archived

model = varComp(data = qualification, fixed = as.formula("resp ~ fixed -1"), random = as.formula("~ Surgeon"))
summary(model)

# Variance components and their covariance matrix:
var.comp = model$varComp
var.res = model$sigma2
cov.matrix = vcov(model, what = "random")

# Total variance and its variance:
var.tot = var.comp + var.res
var.var.tot = sum(cov.matrix)
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R versus SAS: comparison and validation
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R versus SAS: comparison and validation

“
Perhaps I can try again to explain why I do not take the "obviously correct" approach 
of attempting to reproduce the results provided by SAS.

Although there are those who feel that the purpose of the R Project - indeed the 
purpose of any statistical computing whatsoever - is to reproduce SAS, I am not a 
member of that group.

If those people feel that I am a heretic for even suggesting that a result 
provided by SAS could be other than absolute truth and that I should be made 
to suffer a slow, painful death by being burned at the stake for my heresy ...

“
Douglas Bates (lme4)
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R versus SAS: comparison and validation

“ I don’t see the point to provide variance of variance

(covariance matrix of variance components)… “

Douglas Bates (lme4)

Well… variance of variance are very useful, especially in pharma industry
• Intermediate Precision
• Prediction Interval
• OOS
• …
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R versus SAS: comparison and validation
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R versus SAS: comparison and validation

In Mixed Models:

The fixed effects are the easiest part to estimate
We should always get the same in all software with very high precision

The variance components and their covariance are really the tricky part!
 More likely to obtain (slightly) different results from different software

The nightmare is the degree of freedom for fixed effects ! (by Kenward-Roger)
 More likely to obtain different results from different software
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R versus SAS: comparison and validation

Using a few real data sets
Provides only very limited evidence that no difference will be encountered in a future analysis.

Using thousands of simulated data sets (per design)
Analysed with both software packages, allows to spot many differences that could be traced back

Compare the results between SAS and R
 Proc Compare in SAS is your best friend

proc compare base = MeansSAS_Twocrossed compare = MeansR
LISTEQUALVAR METHOD=PERCENT CRITERION = 0.5001;

title 'Compare SAS and R - One random variable - Means, Accuracy, Trueness';
run;

proc compare base = VarsSAS_Twocrossed compare = VarsR
LISTEQUALVAR METHOD=PERCENT CRITERION = 0.5001;

title 'Compare SAS and R - One random variable - Variances';
run;
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R versus SAS: comparison and validation

DF, trueness and statistical intervals Variance components, DF and CV



54

Last but not least
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