

Outline

1. Problem statement

2. Method: Overview

3. Method: Simulation setup

4. Results

5. Discussion

CAPHRI School for Public Health and Primary Care Problem Statement

- Optimal (suboptimal) methods for handling missing covariates in nonrandomized studies should not be expected to necessarily be optimal (suboptimal) in randomized studies.
- Example: The belief that multiple imputation (MI) is the method of choice for handling missing covariates is generally based on nonrandomized studies.
- What about in randomized controlled trials (RCTs): Is MI still the method of choice for handling missing covariates in RCTs?

CAPHRI School for Public Health and Primary Care Method: *overview*

- Scope review the literature on handling missing covariates in RCTs with a continuous outcome to identify the gaps that need to be filled;
- Gap focused on: Imputation of missing binary covariate,
 - Comparing MI vs. simple alternative methods in RCTs;
- Do so through simulation under a wide range of scenarios;
- Distinguish situations with pre- and post-randomization covariate (but measured before treatment);
 - Hence: more missingness mechanisms than in previous studies;
 - Note: post-randomization covariate is not affected by treatment, only its missingness.

CAPHRI School for Public Health and Primary Care Simulation setup: *Analysis of interest*

> Primary focus: Linear regression model with two covariates (T and Z):

$$Y_i = \beta_0 + \beta_1 T_i + \beta_2 Z_i + \varepsilon_i$$
; $i = 1, ... n$

- \square *T* is the treatment indicator, β_1 the treatment effect of interest, and *Z* the pretest of the outcome *Y*;
- \square Missingness can occur in Z;
- Extension (E): Cox PH regression model with two covariates (T and Z):

$$h_X(x|T,Z) = h_0(x)ex p(\beta_1T + \beta_2Z);$$
 where

- □ X(survival times) based on Weibull distribution: $h_X(x) = \lambda_X k x^{k-1} \exp(\beta_1 T + \beta_2 Z)$, with
 - λ_X and k as scale and shape parameters, respectively.
- □ Random censoring times based on Weibull distribution: $h_C(x) = \lambda_C k x^{k-1}$

Simulation setup: Generating complete data

- Parallel group trial data of sample size n allocated, randomly and evenly, to two treatment groups, (T=0) and (T=1), as follows:
 - Sample size: Small (n=100) and large (n=400);
 - Covariate: Z~ Bernoulli, with P(Z=0) = P(Z=1);
 - Treatment assignment:

$$P(T = 0|_{Z=0}) = P(T = 0|_{Z=1}) = P(T = 1|_{Z=0}) = P(T = 1|_{Z=1})$$

Outcome:

$$Y_i = \beta_0 + \beta_1 T_i + \beta_2 Z_i + \epsilon_i$$
; where:
 $\epsilon_i \sim N(0, 1)$;
 $\beta_0 = 0$; and $(\beta_1, \beta_2) = (1, 1)$; $(1, 2)$; $(2, 1)$; $(2, 2)$

And...

Simulation setup: Creating missingness

> Create missingness on Z using the model:

$$logit\{Pr(R=1)\} = \alpha_0 + \alpha_1 Z + \alpha_2 T + \alpha_3 Y + \alpha_4 ZT$$
; where: $R=0$ if Z is missing and $R=1$ if Z is observed.

- > Five missingness mechanisms considered:
 - □ Case 1: Z measured pre-or post-randomization (but before treatment (7)):
 - MCAR: Missing completely at random
 - MNAR1: Missingness of Z depends on Z
 - ☐ Case 2: Z measured post-randomization (but before treatment (7)):
 - MAR: Missingness of Z depends on T
 - MNAR2: Missingness of Z depends on additive effect of Z and T
 - MNAR3: Missing of Z depends on additive effect of Z, T and ZT

Simulation setup: Overview of all the simulation conditions

Table 1: The simulation conditions $(2\times4\times3\times8=192)$ obtained by combining the parameters.

Sample size n: 100; 400.

1500 datasets for each scenario

Treatment and covariate effects (β_1 , β_2):

(1, 1); (1, 2); (2, 1); (2, 2)

Missingness rates:

20%; 40%; 60%

Missingness mechanisms:				
MCAR	MAR	MNAR1	MNAR2	MNAR3
$a_0 \neq 0$	$a_0 \neq 0$, and	$a_0 \neq 0$, and	$a_0 \neq 0$, and	$a_0 \neq 0$, and
	$a_2 = 0.5$	$a_1 = \begin{cases} 0.5 \\ 2 \end{cases}$	$(a_1, a_2) =$	$(a_1, a_2, a_4) =$
		$u_1 = \begin{cases} 2 \end{cases}$	(0.5, 0.5)	(0.5, 0.5, 1)
			(0.5, 2)	(2, 0.5, 1)

Note: For each missingness mechanism, the α 's not shown were set to 0

Simulation setup: Imputing the missing data and analyzing the imputed data

- Imputation stage: Impute the missing data, using the method at hand (Meth; for instance, mean imputation)
- **2. Analysis stage**: Apply the analysis of interest on each imputed dataset and produce:
 - The treatment effect estimate: $\hat{\beta}_1$;
 - The standard error (SE) of $\widehat{\beta}_1$;
- 3. Repeat 1 and 2 several times (=1500) and produce the performance criteria

CAPHRI School for Public Health and Primary Care Simulation setup: *Performance criteria*

- 1) Bias of $\hat{\beta}_1$
- 2) Coverage of 95% CI
- 3) Relative precision (RP) of $\hat{\beta}_1$
- 4) Relative bias (RB) of estimated SE
- 5) Relative precision (RP) of estimated SE
 - Note: 4) and 5) are not shown here due to time constraints

CAPHRI School for Public Health and Primary Care Simulation setup: *Methods compared*

1) No imputation:

- Analysis on complete data: (REF)
- Unadjusted analysis: (UA)
- Complete-case analysis: (CCA)

2) Mean imputation:

- Across treatment T: (I)
- Per treatment T: (IT)
- Weighted, across treatment *T:* (**WI**)
- Weighted, per treatment *T:* (**WIT**)

3) Missing-indicator method:

- Across *T*: (**M**)
- Per *T*: (**MT**)
- Weighted, across T: (WM)
- Weighted, per T:(WMT)

4) Multiple imputation (MI):

- Across T with predictive mean matching (PMM): (MI_p)
- Per T with PMM: (MIT_p)
- Across T with logistic regression: (MI_I)
- Per T with logistic regression: (MIT_I)

Simulation results for continuous outcome: Bias of $\hat{\beta}_1$ (Figure 1)

Simulation results for continuous outcome: Coverage of 95% CI for $\hat{\beta}_1$ (Figure 2)

Simulation results for continuous outcome: RP of $\widehat{\beta}_1$ (Figure 3)

Simulation results for time-to-event outcome: Bias of $\widehat{\beta}_1$ (Figure E1)

Simulation results for time-to-event outcome: Coverage of 95% CI for $\hat{\beta}_1$ (Figure E2)

Simulation results for time-to-event outcome: RP of $\widehat{\beta}_1$ (Figure E3)

Discussion for RCT with continuous outcome: Recommendations (1)

- No substantial difference in results between the missingness mechanisms, except MNAR3
- Imputation should not be performed per treatment, because this loses precision and underestimates SE, which may result in undercoverage;
- When missingness is unrelated with treatment:
 - The missing-indicator method is best;
 - Mean imputation is a good alternative if there is a need to use less covariates in the analysis;
 - MI is not recommended because it is unnecessarily complex for situations similar to ours and always fails to outperform a simple good alternative; and
 - CCA is preferable (easy to perform) only if the proportion of missingness is negligible: so that precision loss is not substantial

Discussion for RCT with continuous outcome: Recommendations (2)

> When missingness is related with treatment:

- It is safe to use mean imputation, since this produces acceptable results across all the applicable missingness mechanisms;
- The missing-indicator method can be used, provided that missingness is not dependent on treatment by covariate interaction: *if it is sure that MNAR3 is implausible*;
- MI is not preferable, for the same reasons provided previously; and
- CCA is preferable only if the proportion of missingness is negligible: easy to perform and minimal loss of precision

☐ Under MNAR3,

- MI shows some bias probably because T*Z was not used in the imputation model;
- The missing-indicator method is seriously biased.

Discussion for RCT with time-to-event outcome: Recommendations (3)

- > When missingness is related or not with treatment:
 - Only CCA and MIT produce unbiased treatment effect estimate, with acceptable coverage;
 - But CCA is substantially less precise even when missingness is low (here 10%);
 - All other methods are biased with substantial undercoverage in several scenarios;
 - ☐ MIT is best and, therefore, recommended for handling missing covariate;
 - □ CCA can be used only if the missingness rate is much lower than 10%;
 - ☐ All other methods are not appropriate.

CAPHRI School for Public Health and Primary Care Discussion: *Topics for Future work*

➤ In RCTs:

- Situations with missingness in multiple covariates (of mixed types) since these are more likely in practice (*under review*)
 - ✓ For example, a trial with a binary covariate and a continuous outcome measured pre- and post-test, where the covariate and the pre-test outcome are partially missing. This situation allow for comparison of the repeated measurements method with the ANCOVA (used in this study)
- Situations with joint missingness in covariates and outcome (under review)
- How to improve the missing indicator method in case of MNAR3;
- How to improve MI in case of MNAR3 (the use of JAV approach?);
- ➤ In Cluster randomized trials (CRTs):
 - Situations with joint missingness in covariates and outcome (*under study*)

Thanks for attending! Questions?