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Tutorial in biostatistics: data-driven
subgroup identification and analysis in
clinical trials

Ilya Lipkovich,*" Alex Dmitrienko® and Ralph B. D’Agostino Sr.

It is well known that both the direction and magnitude of the treatment effect in clinical trials are often affected
by baseline patient characteristics (generally referred to as biomarkers). Characterization of treatment effect
heterogeneity plays a central role in the field of personalized medicine and facilitates the development of tailored
therapies. This tutorial focuses on a general class of problems arising in data-driven subgroup analysis, namely,
identification of biomarkers with strong predictive properties and patient subgroups with desirable character-
istics such as improved benefit and/or safety. Limitations of ad-hoc approaches to biomarker exploration and
subgroup identification in clinical trials are ussed, and the ad-hoc approaches are contrasted with principled
approaches to exploratory subgroup analysis based on recent advances in machine learning and data mining.
A general framework for evaluating predictive biomarkers and identification of associated subgroups is intro-
duced. The tutorial provides a review of a broad class of statistical methods used in subgroup discovery, including
global outcome modeling methods, global treatment effect modeling methods, optimal treatment regimes, and
local modeling methods, Commeonly used subgroup identification methods are illustrated using two case studies
based on clinical trials with binary and survival endpoints. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: clinical trials: exploratory subgroup analysis: biomarker analysis; data mining; multiplicity control.

Chapter 3 (
Data-Driven and Confirmatory Subgroup =
Analysis in Clinical Trials

Alex Dmitrienko, Ilya Lipkovich, Aaron Dane, and Christoph Muysers

Abstract In this chapter we provide an overview of the principles and practice of
subgroup analysis in late-stage clinical trials. For convenience, we classity different
subgroup analyses into two broad categories: data-driven and confirmatory. The
two settings are different from each other primarily by the scope and extent of
pre-specification of patient subgroups. First, we review key considerations in con-
firmatory subgroup analysis based on one or more pre-specified patient populations.
This includes a survey of multiplicity adjustment methods recommended in multi-
population Phase III clinical trials and decision-making considerations that ensure
clinically meaningful inferences across the pre-defined populations. Secondly. we
consider key principles for data-driven subgroup analysis and contrast it with that
for a guideline-driven approach. Methods that emerged in the area of principled
data-driven subgroup analysis in the last 10 years as a result of cross-pollination of
machine learning, causal inference and multiple testing are reviewed. We provide
examples of recommended approaches to data-driven and confirmatory subgroup
analysis illustrated with data from Phase I clinical trials. We also illustrate
common errors, pitfalls and misuse of subgroup analysis approaches in clinical trials
often resulting from employing overly simplistic or naive methods. Overview of
available statistical software and extensive bibliographical references are provided.
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The mythology of subgroup analysis in Pharma (a historical view)

One covariate at a time strategy, (e.g test Subgroups should be “pre-specified” (??) and
interactions at alpha=0.1) “biologically plausible”
Multiplicity does not need to controlled since The central role of covariate-by-treatment

“it is for internal decision making”, “no for interaction test, as a “gatekeeper” (no testing
submission” in subgroups unless passing the interaction
test)
Accounting for uncertainty in the very last step No testing in subgroups unless the effect in
of a multi-stage strategy, forgetting about the overall population is significant
“preliminary data looks” (consistency)
The subgroup search involves human “Data-driven elements should be minimized”

interactions rarely captured

“Null findings” not recorded and reported Interpreting results “with caution”



Principled/disciplined data-driven subgroup analysis

* Subgroup analysis is a special case of statistical learning, not
just a type of multiple testing problem encountered in clinical
trials

* The key element driving subgroups that should be learned
from the data is the heterogeneity of treatment effect across
subjects

* Requires intersection and cross-fertilization of different fields:
causal inference, machine learning, multiple hypothesis testing



Learning heterogeneity of TE from the data (RCT and Obs studies)

CATE(x) = A(x) = E(Y|T =1,X=x) — E(Y|T =0,X = x)

Causal
inference

Post-selection inference

P wultiple 8

Machine hypothesis
learning testing

X - possibly high dimensional

CATE: Conditional Average Treatment Effect (a.k.a ITE, PTE)



The set up: individual TE

 Each patient has two potential outcomes of Y, i.e. ¥;(0), Y; (1) correspondingto T =
0,1; only one outcome is observed

e Qutcome function, given pre-treatment covariates
ftx) =EX@®I|X =x),te€ {01}

* Under treatment ignorability, ensured by randomization in RCT

ft,x) =EY|T =t,X =x)
* Treatment contrast, A(x) = f(1,x) — f(0,x)
* Note that we can represent the response surface a€{-11}

f(t,x) = h(x) +5AG) (2t — 1),
* where h(x) is the main covariate effect
1
h(x)=3 (F(1,x) + £(0,x))

* Note, h(x) # f(x) = E(Y|X = x)
* |n non-randomized trials we need to estimate propensity m(x) = Pr(T = 1|X = x)



Defining subgroups based on A(x) = CATE(x)

« Assume we managed to estimate A(x)
— Perhaps simplyasA(x) = E(Y|IT=1,X=x)—E{Y|T=0,X =x)

Often leads to individualized
treatment regimen (ITR), D (x) maps

Often may not ensure that in the
subgroup each individual A(x) > 6,

dim(X) to {0,1}, e.g. assign D(x) =1 o L
ifA(x) > 8, D(x) =0 if A(x) < -8, i x eg E{A(x)} > §, for x € S(x)

otherwise treat randomly

is learned from A(X), X
e.g. by a regression tree




Literature on subgroup identification is diverse: 3 papers

ORIGINAL ARTICLE

Selecting Optimal Subgroups for Treatment Using
Many Covariates

Tvler J. VanderWeele,* Alex R. Luedtke,* Mark J. van der Laan,® and Ronald C. Kessler?

Abstract: We consider the problem of selecting the optimal subgroup
o treat when data on covariates are available from a randomized trial
or observational study. We distinguish between four different settings
including: (1) treatment selection when resources are constrained; (2)
treatment selection when resources are not constrained; (3) treatment
selection in the presence of side effects and costs; and (4) treatment se-
lection to maximize effect heterogeneity. We show that, in each of these
cases, the optimal treatment selection rule involves treating those for
‘whom the predicted mean difference in outcomes comparing those with
versus without treatment, conditional on covariates, exceeds a certain
threshold. The threshold varies across these four scenarios, but the form
of the optimal treatment selection rule does not. The resulfs suggest a
‘move away from the traditional i i

icine, New randomized trial designs are proposed o as to implement
and make use of optimal treatment selection rules in healtheare practice.
Keywords: Effect modification; Interaction; Optimal treatment se-
lection; Precision medicine; Personalized treatment; Randomized
trial; Subgroup

(Epidemiology 2019;30: 334-341)
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CAPITAL: Optimal Subgroup Identification

via Constrained Policy Tree Search

Hengrui Cai* !, Wenbin Luf!, Rachel Marcean West!Z2,
Devan V. Mehrotra®?, and Lingkang Huang1?

IDepartment of Statistics, North Carolina State University
*Biostatistics and Research Decision Sciences, Merck & Co., Ine.

Abstract

Personalized medicine, a paradigm of medicine tailored to a patient’s character-
istics, is an inereasingly attractive field in health care. An important goal of person-
alized medicine is to idemify a subgroup of patients, based on baseline covariates,
that benefits more from the targoted treatment than other comparative treatments
Most of the current subgroup identifieation methods only focus on obtaining a sub-
group with an enhaneed treatment effect without paying attention to subgroup size.
Yot, a clinically meaningful subgroup learning approach should identify the maxi-
mum number of patients who ean benefit from the better treatment. In this paper,
wio present an optimal subgroup selection rule (SSR) that maximizes the mumber of
selocted patients, and in the meantime, achioves the pre-specified clinically meaning-
ful mean outeome, such as the average treatment effect. We derive two equivalent
theoretical forms of the optimal SSR based on the contrast function that deseribes the
treatment-covariates interaction in the outcome. We further propose a ConstrAined
Polley Tree seAreh algorithm {CAPITAL) to find the optimal SSR within the in-
terpretable decision tree class. The proposed method is flexible to handle multiple
constraints that penalize the inclusion of patients with negative treatment effeets, and
to address time to ovent data using the resiricted mean survival time as the clinically
interesting mean outcome. Extensive simulations, comparison studies, and real data
applications are conducted to demonstrate the validity and utility of our methed.
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Optimal subgroup selection

Henry W. 1. Reeve, Timothy I. Cannings and Richard J. Samworth
University of Bristol, University of Edinburgh
and University of Cambridge

Abstract

In clinical trials and other applications, we often see regions of the foature space
that appear to exhibit interesting behaviour, but it is unclear whether these observed
phenomena are reflected at the population level. Focusing on a regression setting, we
consider the subgroup selection challenge of identifying a region of the feature space
on which the regression function exceeds a pre-determined threshold. We formulate
the problem as one of constrained optimisation, where we seck a low-complexity, data-
dependent seloction set on which, with a guaranteed probahility, the regression function
is uniformly at least as large as the threshold; subject to this constraint, we would like
the region to contain as much mass under the marginal feature distribution as possible.
This leads to a natural notion of regret, and our main contribution is to determine the
minimax optimal rate for this regret in both the sample size and the Type I ferror
probability. The rate involves a delicate interplay between parameters that control the
smoothness of the regression function, as well as exponents that quantify the extent
to which the optimal selection set at the population level can be approximated by
families of well-behaved subsets. Finally, we expand the scope of our previous results
by illustrating how they may be generalised to a treatment and control setting, where
interest lies in the heterogeneous treatment effect.



Literature on subgroup identification is diverse: Paper #1

ORIGINAL ARTICLE

Selecting Optimal Subgroups for Treatment Using
Many Covariates

Tvler J. VanderWeele,* Alex R. Luedtke,> Mark J. van der Laan,® and Ronald C. Kesslerd

Abstract: We consider the problem of selecting the optimal subgroup
to treat when data on covariates are available from a randomized trial
or observational study. We distinguish between four different settings
including: (1) treatment selection when resources are constrained; (2)
treatment selection when resources are not constrained: (3) treatment
selection in the presence of side effects and costs; and (4) treatment se-
lection to maximize effect heterogeneity. We show that, in each of these
cases, the optimal treatment selection rule involves treating those for
whom the predicted mean difference in outcomes comparing those with
versus without treatment, conditional on covariates, exceeds a certain
threshold. The threshold varies across these four scenarios, but the form
of the optimal treatment selection rule does not. The results suggest a
‘move away from the traditional subgroup analysis for personalized med-
icine. New randomized trial designs are proposed so as to implement
and make use of optimal treatment selection rules in healthcare practice.
Keywords: Effect modification; Interaction; Optimal treatment se-

treatment across subgroups defined by various pretreatment
covariates.'® Such analyses can help give insight into whether
a treatment might be more effective for men versus women,
or for younger versus older persons, or for any other char-
acteristic or variable defined before the receipt of treatment.
These types of analyses are relevant if the effect of treatment
might vary across individuals in a population, a phenomenon
often referred to as “effect heterogeneity.” Such analyses can
be useful in deciding who to treat, or who to treat first, if re-
sources are limited. They can also be useful when deciding
which of two treatments to give to whom.

While well-established methodology has been used for
decades to carry out such subgroup analyses across strata defined
by a single covariate,"”!" in actual practice it would be more de-
sirable to make use of data on numerous covariates. Viewed from

lection; Precision medicine; treatment;
trial; Subgroup

(Epidemiology 2019;30: 334-341)

the perspective, we are interested in knowing how
to best choose the appropriate treatment for an individual with
a particular set of characteristics. This task is sometimes now
described as “personalized medicine” or “precision medicine.” It

Table. Summary of Optimal Subgroup Selection Settings and Optimal Treatment Selection Rules

Setting

Optimal Treatment Rule

Threshold

Resource constraints (can only treat g%)

Unconstrained resources

Unconstrained resource with costs or side effects
Maximizing effect heterogeneity

E[YJA=1,C=c]-E[Y|[A=0,C=c]>k
E[YJA=1,C=c]-E[Y[A=0,C=c]>0
E[Y|A=1,C=c]-E[Y|A =0, C=c]>(c)
E[YJA=1,C=c]-E[Y|[A=0,C=c]> K

k is selected, so g% are treated

Treat all with positive expected treatment effect
Treat all with expected treatment effect above costs
' is determined by numerical optimization
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Literature on subgroup identification is diverse: Paper #2

CAPITAL: Optimal Subgroup Identification
via Constrained Policy Tree Search

Hengrui Cai* !, Wenbin Lu'!, Rachel Marcean West2,
Devan V. Mehrotra®, and Lingkang Huang??

!Department of Statistics, North Carolina State University
?Biostatistics and Research Decision Sciences, Merck & Co., Inc.

Abstract

Porsonalized medicine, a paradigm of medicine tailored to a patient’s character-
istics, is an increasingly attractive field in health care. An important goal of person-
alized medicine is to identify a subgroup of patients, based on baseline covariates,
that benefits more from the targeted treatment than other comparative treatments.
Most of the current subgroup identifieation methods enly focus on obtaining a sub-
group with an enhaneed treatment effect without paying attention to subgroup size
Yet, a clinically meaningful subgroup learning approach should identify the maxi-
mum number of patients who can benefit from the better treatment. In this paper,
we present an optimal subgroup selection rule (SSR) that maximizes the number of
selected patients, and in the meantime, achieves the pre-specified clinically meaning-
ful mean outcome, such as the average treaiment effect. We derive two equivalent
theoretical forms of the optimal SSR based on the contrast function that describes the
treatment-covariates interaction in the outeome. We further propose a ConstrAined
Polley Tree seArch algorithm (CAPITAL) to find the optimal SSR within the in-
terpretable decision tree elass. The proposed method is flexible to handle multiple
constraints that penalize the inelusion of patients with negative treatment effects, and
to address time to event data using the restricted mean survival time as the elinieally
interesting mean cutcome. Extensive simulations, comparison studies, and real data
applications are conducted to demonstrate the validity and utility of our method.

3.2 Constrained Policy Tree Search Algorithm

In this section, we formally present CAPITAL. First, we transform the constrained opti-
mization in I:- into individual rewards defined at the patient level. This enables us to
identify patients more likely to benefit from treatment. Then, we develop a decision tree
to partition these patients into the subgroups based on the policy tree algorithm proposed

by Athey and Wager (2017) {[Athey and Wager] [202T]).
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Figure 2: Iustration of a simple I = 2 decision tree with splitting variables X (1) and X2
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Optimal subgroup selection

Henry W. J. Reeve, Timothy I. Cannings and Richard J. Samworth
University of Bristol, University of Edinburgh
and University of Cambridge

Abstract

In clinical trials and other applications, we often see regions of the feature space
that appear to exhibit interesting behaviour, but it is unclear whether these ohserved
phenomena are reflected at the population level. Focusing on a regression setting, we
consider the subgroup selection challenge of identifving a region of the feature space
on which the regression function exceeds a pre-determined threshold. We formulate
the problem as one of constrained optimisation, where we seek a low-complexity, data-
dependent selection set on which, with a 1 probability, the ion function
is uniformly at least as large as the threshold; subject to this constraint, we would like
the region to contain as much mass under the marginal feature distribution as possible.
This leads to a natural notion of regret, and our main contribution is to determine the
minimax optimal rate for this regret in both the sample size and the Type [ error
probability. The rate involves a delicate interplay between parameters that control the
smoothness of the regression function, as well as exponents that quantify the extent
to which the optimal selection set at the population level can be approximated by
families of well-behaved subsets. Finally, we expand the scope of our previous results
by illustrating how they may be generalised to a treatment and control setting, where
interest lies in the heterogeneous treatment effect.

Literature on subgroup identification is diverse: Paper #3

Our first contribution is to formulate subgroup selection as a constrained optimisation
problem. Civen independent covariate-response Eai:rs and a family 4 of subsets of our feature
space, we seck a data-dependent selection set A taking values in 4 with the Tvpe [ error
control property that, with pru:u]:uabi]ity at least 1 — o, the regression function is uniformly
no smaller than the level v on A; subject to this constraint, we would like the proportion of
the population belonging to A to be as large as possible, In practice, 4 would typically be
chozen to be of relatively low complexity, so0 as to lead to an interpretable decision rule.

After introducing this new framework, our first result (Proposition 1 in Section 2) reveals
the extent of the challenge. We show that if our regression function belongs to a Holder
class, but the corresponding Holder constant is unknown, then there is a sense in which no
algorithm that respects the Type 1 error guarantee can do better in terms of power than
one that ignores the data. We therefore work over Holder classes of known smoothness 3,
and with a known upper bound on the Holder constant; see Definition 1. This enables us
to define a data-dependent selection set that satisfies our Type [ error guarantes. The idea
iz to construct, for each hyper-cube B in a suitable collection within our feature space BY,
a p-value for testing the null hypothesis that the regression function is not uniformly above
the level 7 on 5. The p-values are then combined via Holm's procedure (Holm, 1979) to
identify a finite uuiun of hyper-cubes that satisfy our Tyvpe I error control property. Cur
final selection set Agss maximises the empirical measure among all elements of A4 that Lie
within thiz finite union of hyper-cubes.

AT " 1 Lt C e B L B Lo 13 3= i1
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What to look at when reading papers on subgroup ID

 What is the number of candidate predictors P that the
procedure can handle?

— P=1 focus is on selecting a cutoff for a single continuous biomarker,
there is a substantial literature just for this case (e.g Han et al, 2021)

— P =10-20
— P =100-1000
— P > n or P > log(n), P grows withn

* Typically, it is safe to assume the set of true predictors of
A(x) is sparse



What to look at when reading papers on subgroup ID (cont.)

 What is pre-defined? And what is data-driven?

* What is the “model space” where the subgroups reside?

— For example:

« Estimate A(x) as a conditional log hazard ratio from Cox regression including T, a
predefined set of 5-10 candidate X's and X = T interactions

« Form subgroups by running trees of depth 1 and 2 on A(x) as outcome variable
* Resulting subgroups are like S(x) = {x: X; < ¢y, X3 > c3}
— Same as previous but penalized Cox regression with 100 candidate X’s and
LASSO penalty

— Run Bayesian additive tree regression (BART) to estimate posterior for A(x)
with = 1000 variablesgnd determine Bayesian credible intervals for
patients likely to have A(x) > 0 (Schnell et al, 2018)

13



What to look at when reading papers on subgroup ID (cont.)

* Does the method apply only to randomized trials or to both RCT and
observational data?

— For observational data, there is a subtle interplay between
confounders and modifiers of treatment effect affecting
regularization (model selection)

* How is model complexity controlled to prevent overfitting?

— In previous examples, for the first case there may be a rule for selecting
between trees of depth 1 or 2

— The second example uses LASSO so need to understand how variables are
penalized, are different penalties used for X’s and X*T interactions?

— For BART (third example), need to understand how priors are set

14



What to look at when reading papers on subgroup ID (cont.)

 What outputs does the method produce?

—Individualized treatment contrast, A(x)

—Signatures of promising subgroups, S(x) = {x:X{ < ¢4,
X3 > c3}

—Optimal treatment assignment rule D(x) = 1 if A(x)> ¢4,
otherwise D(x) = 0

— Predictive biomarkers, a.k.a. effect modifiers (i.e. those
driving A(x)) ordered by variable importance.



What to look at when reading papers on subgroup ID (cont.)

What inference is done (if at all)?

— Post-selection inference is challenging!

Examples of inference

Inference on A(x), e.g. pointwise Cl for random forests (Wager and Athey, 2018), CI for A(x) estimated
from LASSO (Ballarini et al, 2018), simultaneous bands on A(x) from semiparametrics (Guo at al., 2021)

Inference on some features of A(x) , e.g. testing for presence of TE heterogeneity (via latent mixtures,
Shen and He, 2015) or machine learning methods (Chernozhukov, 2019)

Controlling the probability of selecting the right subgroups, S(x) vs Sy, (%), e.g providing Bayesian
credible intervals Pr(Siower S Strue € Supper) > 1 — a (Schnell et al, 2018)

“Honest effect” in selected subgroup S(x), e.g using bootstrap correction for optimism bias (Foster at
al, 2011; Guo and He, 2020), Bayesian model averaging (Bornkamp et al, 2017)

Inference on individualized treatment assignment rule D(x), e.g on the expected outcomes if the rule
is applied to future patients

Controlling the False Discovery Rate, e.g., for selection of predictive biomarkers (Wei et al, 2021;
Sechidis et al, 2021)

16



Typology of Subgroup Identification Lipkovich et al. (2017)

f4(\t, x) A(x)

6=0

Global outcome modeling: Y

>

A@)] A@)
5=0 / =0
—— li > > x
Prescribe B Prescribe A

Individual treatment regimen modeling: sign{A(x)}

X

Global treatment effect modeling

7

=
-
-

Enhanced treatment effect
for drug A

Local treatment effect modeling : Subgroup search



Global outcome modeling

A multi-stage process (e.g Virtual Twins)

* Fit regression model for f(t,x) = E(Y|T = t,X = x, separate
f(t, x) by arms or a single model with interactions, typically a black
A box modeling (e.g random forest, boosting, etc)

f(Lx) « Compute A(x)=f(1,x) — £(0,x)

* Run CART on A(x) as the outcome variable

* Prune tree and select a leaf or a union of leaves with
sufficiently large treatment effect

VT is an off-the-shelf method that is compared virtually with every

S new proposed method

Global out deling: Y x * Results can be sensitive to implementation (Kiinzel et al, 2019;
obal officome modeling: Hermansson and Svensson, 2021)

* Main challenge is avoiding bias which can go both directions:
underfitting by penalizing X*T interactions too harshly, or
overfitting, e.g. when fitting and tuning outcome models
separately by arm.

18



Global treatment effect modeling

Directly evaluates A(x) without a need
to estimate the main effect h(x)

 One approach is to adopt any tree-based
method by modifying splitting criterion,
e.g. maximizing the interaction at every
split, e.g by looking at splits with
max (,A\left - Zright)z

* Another idea is to model modified

outcome. For continuous outcome, in RCT
with 1:1 randomization Y* = 2Y (2T — 1).

A(x)

1

7

N

- X
Global treatment effect modeling



Treatment effect modeling: Recent advances

e Subgroup identification in dose-finding trials via model-based recursive
partitioning by Thomas et al. (2018) (using mob in R package partykit, Zeileis et
al, 2008)

— See also R package modeld4you (model based recursive partitioning for subgroup analysis,
Seibold et al. 2016)

* Adopting GUIDE for Identification of subgroups with differential treatment
effects for longitudinal and multiresponse variables (Loh et al, 2016)

e Causal forests (grf R package)
— Constructs local non-parametric estimates of A(x) by averaging over treatment effects from

oa_r.n

x’s” in the same terminal nodes across trees

— Implements “honest trees”: divide data into 2 halves, use one for splitting and the second
for computing A(x)

— Builds on ideas of Efron (2013) and Wager et al. (2014) to construct inference for random
forests

e Causal Bayesian trees, Hahn et al. (2019)

20



Treatment effect modeling: Recent advances (cont.)

* A broad framework for directly estimating A(x) for different

types of outcomes/loss functions (R package personalized)
— Builds on ideas of Tian et al. (2014) and Chen at al. (2017
Probability of

— LetA=2T —1,n(x) = Pr(T = 1|X = x), n(A4|x) receiving actual

5 treatment
AY
E ((n(Alx) — g(x))

to see why, condition expectations on A = {1, —1}, take derivative with respect to f(x) and equate to 0

E ((AY — g(x))le = x) has the same estimand and so is

X = x) — min returns g(x) =A(x)/2,

1

(A|x)
1 2

prTEat2 ((v - ag()|x =x),

opening doors to different families of loss functions, therefore allowing for different

outcome types and modeling for g(x): from penalized regression to gradient boosting

21



Treatment effect modeling: Recent advances (cont.)

e R-learning for estimation of A(x) (Zhao et al, 2018; Nie and
Wager, 2021)

—Note A(x;) = E (Y‘:fix‘;), where f(x) = E(Y|x = x)

A(-) = argmmA—Z Y; — f () = {T;=m(x)}A)]? + A {AC)}
— Prognostic effects and propensity (for non-randomized trials) need to
be estimated at first step, but the focus is placed on the target A(x)

— f(x;) and m(x;) (for non RCT) are estimated from ML methods and
cross-fitted version are plugged-in f ' (x;) and 7 ' (x;)



Modeling ITRs (outcome weighted learning)

Global outcome modeling: Y

AG)]

5=0 /

_; :x

Prescribe B Prescribe A

Individual treatment regimen modeling: sign{A(x)}

While ITR can be estimated based on methods of outcome
modeling (1) or treatment effect modeling (2), some
methods estimate directly the sign of A(x) by restating it as
a classification problem (Zhao et al, 2012)

One approach is to write the expected value of ITR

E{r (D)) = E |52 ] - max

This is equivalent to minimizing weighted classification
I(D(X)£T)Y

loss E[ Pr(TID) ] — min

Minimizing 0-1 loss is an NP problem so typically we
modify it using a smooth convex surrogate loss function.
E.g hinge, or exponential loss: E[LW(T,f(x))]

This allows using off-the-shelf packages to identify ITRs,
e.g. logistic regression with lasso penalty and weights
w; = Y/Pr(T = |X = x;)

23



Modeling ITRs: Recent advances

* Treatment allocation based on simultaneous confidence band estimated
from semiparametric modeling of A(x) (Guo at al, 2021)

* Multi armed angle-based direct learning for ITR (Qi et al, 2020)
* Learning optimal ITR adopting risk/costs constraints (Wang et al, 2018)

* Risk controlled decision trees and random forests for precision medicine
(Doubleday et al, 2021)

» Searching treatment policies within a restricted class of fixed depth trees.
Uses doubly robust estimator of treatment effect function. Athey and
Wager (2021), policytree R package (by Sverdrup et al.)

— Extending work on maximizing empirical welfare (value) of policies within
restricted classes from randomized studies by Kitagawa and Tetenev (2018).

— Recent application/extension: CAPITAL: Optimal subgroup identification via
constrained policy tree search (Cai et al, 2021)

24



Direct subgroup search (local treatment effect modeling)

* Instead of estimating the response
function A(x) on the entire covariate space

and then carving out segments, search A(x)
directly for such regions
* Recent methods /
— SIDEScreen (Lipkovich and Dmitrienko, 2014) §=0 |rcumm==""""n i
— Adaptation of PRIM method in Chen et al, |

Enhanced treatment effect

— Sequential-BATTing (Huang et al, 2017) for drug A
) ) Local treatment effect modeling : Subgroup search
implemented in R package SubgriD

25



Software for subgroup identification

* http://biopharmnet.com/subgroup-analysis-software/

Software for subgroup identification
SIDES method

R package SIDES implementing the regular SIDES method (Subgroup Identification
Based on Differential Effect Search) based on Lipkovich et al. (2011) [last update: October
04, 2016]. The package is maintained by Marie-Karelle Riviere (eldamjh@gmail.com).

Download the SIDESx! package (an Excel add-in) which implements the regular SIDES
and SIDEScreen methods [last update: March 25, 2016]. The package is maintained by
Tiya Lipkovich (ilyallipkovich@gmail.com).

Download the R functions, C++ functions (sides64.dll), and examples for the regular
SIDES (Lipkovich et al, 2011), SIDEScreen (Lipkovich and Dmitrienko, 2014}, and
Stochastic SIDEScreen (Lipkovich et al, 2017) methods [last update: October 01, 2018],
The functions and examples are provided by Ilya Lipkovich (ilya.lipkovich@gmail.com),
Alex Drmitrienko and Bohdana Ratitch.

Interaction Trees method

Download the R functions and examples for the Interaction Trees method [last update:
Dec 30, 2014]. The functions and examples are provided by Xiaogang Su (Xiaogang Su's
site). Download the R code for the Interaction Trees method [last update: Dec 30, 2014].

Virtual Twins method

Download the R code for the Virtual Twins method [last update: Dec 30, 2014]. The code
is provided by Jared Foster (jaredcf@umich.edu).

R package aVirtualTwins that implements an adaptation of the Virtual Twins method by
Foster et al. (2011)

GUIDE package

QUINT method

Quint package for QUalitative INteraction Trees. The package is maintained by Elise
Dusseldorp (Elise Dusselderp’s site) and colleagues. Reference: Dusseldorp and

Mechelen (2014).

FindIt method

FindIt package for finding heterogeneous treatment effects [last update: February 27,
2015]. Reference: Imai and Ratkovic (2013).

Blassa method

Download the R functions for the Bayesian two-stage Lasso strategy for biomarker
selection for time-to-event endpoints [last update: December 16, 2014]. The code is

provided by Xuemin Gu (xuemin.gu@bms.com). Reference: Gu, Yin and Lee (2013)

ROWSi method

Download the R cade for the ROWSi method (Regularized Outcome Weighted Subgroup
identification). Reference: Yu et al. (2015).

Model-based Recursive Partitioning

R partykit package: A Toolkit for Recursive Partytioning, which can perform subgroup

analyses using the functions Imtree(), glmtree() (or more generally, mob()) and ctree()).

Other sources:

R package personalized (maintained by Jared Huling) for subgroup identification and
estimation of heterogeneous treatment effects. It is a general framework that
encompasses a wide range of methods including ROWSi, outcome weighted learning,
and many others. See documentation and article explaining the underlying

methodology.

R package SubgrID implements several algorithms for developing threshold-based
multivariate (prognostic/predictive) biomarker signatures via bootstrapping and
aggregating of thresholds from trees (BATTing), Monte-Carlo variations of the Adaptive
Indexing Method (AIM) by Huang X. et al. (2017) and and adaptation of Patient Rule
Induction Method (PRIM) for subgroup identification by Chen G. et al. (2015).

Fu, Zhou and Faries (2016) developed a search approach that provides simple and
interpretable rules defining subgroup of patients with maximizes average patients’
benefit for different treatments within a general framework of outcome weighted

learning (OWL). Here you can find the C++ implementation.

R package DynTxRegime implements methods to estimate dynamic treatment regimes
using Interactive Q-Learning, Q- Learning, weighted learning, and value-search methods
based on Augmented Inverse Probability Weighted Estimators and Inverse Probability
Weighted Estimators.

R package listdtr constructs list-based rules (lists of if-then clauses) to estimate the

GUIDE package for classification and regression trees now includes methods for

subgroup identification. The GUIDE package is maintained by Wei-¥in Loh (Wei-Yin Recently a new package model4you has been created that specializes on stratified and optimal dynamic treatment regime based on the approach by Zhang et al. (2016).

personalized treatment effect estimation. The package is maintained by Heidi Seibold

(heidi@seibold.co).

Loh's site). For more information on the subgroup identification features, see Section
5.10 of the GUIDE User Manual [last update: September 25, 2018] and paper by Wei-Yin
Loh, Xu He and Michael Man.

The subtee R package implements method for bootstrap-corrected estimation after
subgroup selection described in Rosenkranz (2016) and a model averaging approach

from Bornkamp et al. (2016). 26
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A shift from ad-hoc “subgroup chasing” methods towards principled methods of
personalized/precision medicine utilizing ideas from causal inference, machine learning
and multiple testing emerged in last 10 years producing a vast number of diverse
approaches

For naive multistage methods (requiring fitting the response surface f (¢, x))
regularization bias can be large, as each step is optimized for prediction not for the final
estimation target (Kiinzel et al, 2019; Chernozhukov, 2019; Nie and Wager, 2021)

While methods that estimate A(x) obviating fitting main effects h(x) are attractive,
substantial efficiency can be gained by using doubly-robust methods, such as utilizing
augmented inverse propensity weighted scores, even in the context of RCT where
propensities are known (Athey and Wager, 2021; Kennedy, 2021)

There is increasing interest in developing ITRs respecting constraints on costs, adverse
events, sample size (Wang et al, 2018; Athey and Wager, 2021; Cai et al, 2021)

There is a need in interpretable personalized solutions (ITR’s) within a pre-defined policy
class, e.g tree-structured or boxes (Laber and Zhao, 2015; Cai et al, 2021; Doubleday et
al., 2021)
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