[bookmark: introduction-and-overview]Introduction and Overview
R is an extremely powerful statistical programming language but there’s no doubt that it has its flaws, not least some frustrating inconsistencies in syntax that can be a barrier for potential adopters. In this article we’ll explore some of the recent syntax improvements that have been introduced via something called the “tidyverse”.
When you think of R code, what comes to mind? If it’s something like the following syntax:
Give me records in the "theoph" data with a concentration greater than 10
Theoph[Theoph$conc > 10,]
Then I urge you to read on!
R has changed. A lot. And most of the change has happened within the last 2-3 of years. Modern R code is much more readable, functional, and pretty much $ and [] free! These days, mentioning dollar signs or square brackets to a new R user results in that same look a new SAS users give you when you mention punch cards!
So what’s changed? In short, the development of “tidyverse”; a collection of R packages[footnoteRef:22] for data analysis, primarily developed by a man named Hadley Wickham, with support from his team of R language developers at RStudio and a number of other high profile figures in the R world. [22: For anyone unfamiliar with R’s package system, an R package is like a “module” in SAS terminology, or “library” in most other programming languages.]

[bookmark: tidyverse-core-concepts]Tidyverse Core Concepts
The tidyverse actually contains very little new functionality. The key to its success has been to provide a more user-friendly analysis framework around data frames and effectively shield the user from concepts such as lists and matrices. Tidyverse functions are very simple. They perform a single action only and for most functions both the input and output is a data frame. To simplify things further, functions also implement something called “lazy evaluation”, which in simple terms means that we don’t have to put quotes around variable names or use “$” to extract variables.
The select function provides a typical example of the tidyverse syntax.
Extract the "conc" column from the Theoph data frame
select(Theoph, conc)
[bookmark: components]Components
As mentioned, the tidyverse is a collection of R packages focused around a data analysis workflow (see Figure 1) that is described in detail in the book R for Data Science [footnoteRef:25]. [25: R for Data Science]

[image: data-science.png]
Figure 1 - The tidyverse philosophy
Each of the various components can now be installed in one line of code thanks to the umbrella package, tidyverse (install.packages(tidyverse)). Several of the packages can also be loaded together by a single library call library(tidyverse).
Some of the more key packages within the data analysis workflow are listed below. But this is by no means the full extent of the tidyverse. In addition to these packages, the tidyverse contains several other packages to simplify functional programming (see purrr, rlang and others), web scraping (httr, rvest), working with common data structures (jsonlite, xml2), and many more.
	Packages
	Tidyverse Workflow

	readr, haven
	Import (/Export)

	tidyr
	Tidy

	dplyr
	Transform - core dataset manipulation

	lubridate
	Transform - dates/times

	stringr
	Transform - character string

	forcats
	Transform - factors

	ggplot2
	Visualise

	modelr, broom
	Model

[bookmark: worked-example]Worked Example
In this worked example we’ll look at a scattering of functions in order to further highlight the new syntax and explore some of the key capabilities. First, we start with the input data (this is available to download from The AIMS SIG home page). The tidyverse contains many really useful functions such as crossing for simulating data, but we’ll start with a ready-made demography dataset containing columns: USUBJID, AGE, SEX, COUNTRY, ARM. To make this more realistic the data are read in from a “.SAS7BDAT” file using the read_sas function in the haven package.
Load haven package so that we can import data
library(haven)
Read in some SAS data from my local working directory
dm <- read_sas("dm.sas7bdat")
Have a look at the data
dm
A tibble: 30 x 5
USUBJID AGE SEX COUNTRY ARM
<chr> <dbl> <chr> <chr> <chr>
1 STD123456:000001 32 F UK Comparator
2 STD123456:000002 28 M FRA Comparator
3 STD123456:000003 55 M USA Comparator
4 STD123456:000004 35 F GER Comparator
5 STD123456:000005 30 F IRE Comparator
6 STD123456:000006 22 F GER Comparator
7 STD123456:000007 59 F USA Comparator
8 STD123456:000008 53 M GER Our drug
9 STD123456:000009 60 F USA Our drug
10 STD123456:000010 48 M USA Comparator
... with 20 more rows
Keen-eyed R users may notice that the output differs from a standard data frame print. Tidyverse data frames are actually something called “tibbles”; an extension of data frames that include meta-information and don’t fill the screen when printed. Although variable labels are not shown here, they are imported by read_sas and can be extracted if required. In RStudio a call to View produces a really nice data viewer that displays variable names and labels together along with the full data.

It is worth noting that the haven package can also be used to create SAS transport files (a non-proprietary format) with very little effort, write_xpt(dm, "dm.xpt", version=5) and it can even write proprietary “.SAS7BDAT” files (write_sas), although this functionality is still experimental.
[bookmark: subsets]Subsets
Now let’s look at some simple subsets. Each of the following functions takes a data frame as the first argument. Subsequent arguments are specific to the function being called. For example, the filter function enables us to choose rows based on some conditions. The select function provides similar functionality for columns. We can also use functions like slice to pick out specific rows. To save on space the output is supressed in the examples but in each case the comments explain the syntax.
Subset on males
filter(dm, SEX == "M")
Subset on COUNTRY *AND* ARM
filter(dm, COUNTRY == "UK", ARM == "Comparator")
Keep only the USUBJID and AGE columns
select(dm, USUBJID, AGE)
Drop the country column
select(dm, -COUNTRY)
Keep columns with certain characteristics, eg variables beginning with "A"
select(dm, starts_with("A"))
Pick out the first and last rows
slice(dm, c(1, n()))
[bookmark: creating-new-variables]Creating New Variables
The mutate function provides a simple mechanism for creating new columns. Like the other functions we’ve seen, mutate takes a data frame as the first argument, subsequent arguments define the new variables. Note that that none of the tidyverse functions will overwrite data unless we tell them to. In this example we use R’s standard assignment, <- to create a new data frame called dm_new which we then print to screen.
Using dm, create age category and region variables from other columns
dm_new <- mutate(dm,
 AGE_CAT = cut(AGE, c(18, 50, 65)),
 REGION = if_else(COUNTRY == "USA", "NORTH AMERICA", "EUROPE")
)
Print to screen
dm_new
A tibble: 30 x 7
USUBJID AGE SEX COUNTRY ARM AGE_CAT REGION
<chr> <dbl> <chr> <chr> <chr> <fctr> <chr>
1 STD123456:000001 32 F UK Comparator (18,50] EUROPE
2 STD123456:000002 28 M FRA Comparator (18,50] EUROPE
3 STD123456:000003 55 M USA Comparator (50,65] NORTH AMERICA
4 STD123456:000004 35 F GER Comparator (18,50] EUROPE
5 STD123456:000005 30 F IRE Comparator (18,50] EUROPE
6 STD123456:000006 22 F GER Comparator (18,50] EUROPE
7 STD123456:000007 59 F USA Comparator (50,65] NORTH AMERICA
8 STD123456:000008 53 M GER Our drug (50,65] EUROPE
9 STD123456:000009 60 F USA Our drug (50,65] NORTH AMERICA
10 STD123456:000010 48 M USA Comparator (18,50] NORTH AMERICA
... with 20 more rows
The packages lubridate, stringr and forcats provide additional utilities for working with dates/times, character string and R’s factor format respectively. Each one is designed to work with vectors (columns of data) but can be called via the mutate function such that we are always working with the data frame format.
[bookmark: summaries-and-by-operations]Summaries and “By” Operations
In addition to mutate, we can statistically summarise columns of data using the summarise function. By calling standard R summary functions via the summarise function we ensure that the data remain in the data frame structure. Here we generate summary statistics for the age variable in the dm_new data that we created in the previous step.
Generate a summary dataset called age_summary
age_summary <- summarise(dm_new,
 # Some standard statistical summaries
 Mean = mean(AGE),
 SD = sd(AGE),
 Min = min(AGE),
 Max = max(AGE))
Print the data to screen
age_summary
A tibble: 1 x 4
Mean SD Min Max
<dbl> <dbl> <dbl> <dbl>
1 50.36667 15.3004 22 71
One of the most useful features of the tidyverse framework is the group_by function that enables “by” operations. As the name suggests, the usage is very much like a SQL “GROUP BY”. As with all the functions we’ve seen thus far, we call the function on a data frame and use subsequent arguments to specify the variables that we wish to group by. The effect of this is to add meta-information to the data frame. This meta-information changes the way functions like mutate and summarise behave.
Add a grouping to dm_new
dm_new <- group_by(dm_new, REGION, ARM)
Summarise the data (which now takes into account the grouping) and save
summary_data <- summarise(dm_new,
 Mean = mean(AGE),
 SD = sd(AGE),
 Min = min(AGE),
 Max = max(AGE))
Print the results
summary_data
A tibble: 4 x 6
Groups: REGION [?]
REGION ARM Mean SD Min Max
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 EUROPE Comparator 45.66667 18.267374 22 69
2 EUROPE Our drug 50.12500 16.461535 26 71
3 NORTH AMERICA Comparator 56.66667 8.594572 48 71
4 NORTH AMERICA Our drug 55.50000 9.000000 48 66
Grouping can be added to (or removed from) any data frame. Once grouped, the behaviour of other tidyverse functions changes accordingly. In the example below we group by REGION and use the slice function to pick out the first record for each region in the data. This kind of operation is more typically used with temporal data where we might sort by subject and time (eg arrange(some_data, USUBJID, TIME)) in order to select baseline visits.
Add a grouping to dm_new
dm_region <- group_by(dm_new, REGION)
Pick out first record (for each region)
slice(dm_region, 1)
A tibble: 2 x 7
Groups: REGION [2]
USUBJID AGE SEX COUNTRY ARM AGE_CAT REGION
<chr> <dbl> <chr> <chr> <chr> <fctr> <chr>
1 STD123456:000001 32 F UK Comparator (18,50] EUROPE
2 STD123456:000003 55 M USA Comparator (50,65] NORTH AMERICA
[bookmark: transformation]Transformation
We can transform/transpose our data with a simple function call to either the gather (to create long data) or spread (to create wide data) functions from the tidyr package. In the following example we use gather to condense all the statistical summaries that we generated together into two columns: Stat, containing the original column name; and Value, the value from the original column.
Gather together all the columns *except* ARM and REGION into two variables
long_data <- gather(summary_data, -REGION, -ARM,
 key = Stat,
 value = Value)
Print the results
long_data
A tibble: 16 x 4
Groups: REGION [2]
REGION ARM Stat Value
<chr> <chr> <chr> <dbl>
1 EUROPE Comparator Mean 45.666667
2 EUROPE Our drug Mean 50.125000
3 NORTH AMERICA Comparator Mean 56.666667
4 NORTH AMERICA Our drug Mean 55.500000
5 EUROPE Comparator SD 18.267374
6 EUROPE Our drug SD 16.461535
7 NORTH AMERICA Comparator SD 8.594572
8 NORTH AMERICA Our drug SD 9.000000
9 EUROPE Comparator Min 22.000000
10 EUROPE Our drug Min 26.000000
11 NORTH AMERICA Comparator Min 48.000000
12 NORTH AMERICA Our drug Min 48.000000
13 EUROPE Comparator Max 69.000000
14 EUROPE Our drug Max 71.000000
15 NORTH AMERICA Comparator Max 71.000000
16 NORTH AMERICA Our drug Max 66.000000
[bookmark: merging]Merging
We can obviously also merge/join on other data frames using a number of different functions of the form *_join. For example, we could perform a left join to bring in some vitals data, left_join(dm_new, vs, by = "USUBJID"). Merge operations don’t require a prior sort but, as mentioned earlier, we could use arrange for this purpose.
[bookmark: plotting]Plotting
Using the extremely popular ggplot2 package we can plot our data at any point and take advantage of R’s general capabilities to write these plots to a variety of different file formats. Here’s an example of a quick boxplot of AGE by ARM and REGION.
qplot(data = dm_new,
 x = ARM, y = AGE,
 fill = ARM,
 geom = "boxplot", facets = . ~ REGION)
[image: tidyverse_files/figure-docx/ggplot2-1.png]
[bookmark: statistical-analysis]Statistical Analysis
R has always been very strong when it comes to statistical analysis and so no attempt has been made to change the way core statistical models have been implemented. However, the modelr and broom packages each contain functionality that help the modelling workflow. The broom package in particular, contains functions such as tidy and augment which, much like ODS in SAS, turn complicated model output into data frames.
[bookmark: and-what-about-for-extracting-variables]And what about $ for extracting variables?
For anyone wanting to avoid $ and [] altogether there is even a function, pull, for extracting vectors.
Extract the AGE column
Note the label attribute that was imported from SAS
pull(dm_new, AGE)
[1] 32 28 55 35 30 22 59 53 60 48 66 26 51 48 59 59 28 69 48 64 55 46 28
[24] 50 48 71 67 67 68 71
attr(,"label")
[1] "Age"
[bookmark: piping]Piping
The “magrittr” pipe (so-called because it originates in an R package called magrittr), %>%, is an operator that enables us to chain/pipe functions together such that the output from one function is fed directly into the next. With the exception of qplot, each of the functions above takes a data frame as the primary input and returns a data frame as its output. These are ideal conditions for using a pipe which, of course, is by design.
If this concept still sounds a little abstract, let’s first consider some of the operations that we walked through earlier:
Create new variables
dm_new <- mutate(dm,
 AGE_CAT = cut(AGE, c(18, 50, 65)),
 REGION = if_else(COUNTRY == "USA",
 true = "NORTH AMERICA", false = "EUROPE")
)
Add a grouping
dm_new <- group_by(dm_new, REGION, ARM)
Summarise by the grouped variables
summary_data <- summarise(dm_new,
 Mean = mean(AGE),
 SD = sd(AGE),
 Min = min(AGE),
 Max = max(AGE))
Turn into long form
long_data <- gather(summary_data, -REGION, -ARM,
 key = Stat,
 value = Value)
The code is perfectly readable but with each function call we generate a data frame and then immediately feed that into the next function. Piping saves us from this by removing the intermediary dataset. Here’s the same example as above but using pipes. Note that by piping/chaining functions together the first argument to each function (i.e. that data frame) is never required.
This time we only generate one new data frame, long_data.
We start with the dm data
long_data <- dm %>%
Pipe dm into mutate to create new variables
 mutate(AGE_CAT = cut(AGE, c(18, 50, 65)),
 REGION = if_else(COUNTRY == "USA", "NORTH AMERICA", "EUROPE")
) %>%
 # Now pipe this into group_by to add a grouping
 group_by(REGION, ARM) %>%
 # Now pipe this into summarise to summarise by the grouped variables
 summarise(Mean = mean(AGE),
 SD = sd(AGE),
 Min = min(AGE),
 Max = max(AGE)) %>%
 # Now pipe this into gather to turn into long form (which is saved at the start)
 gather(-REGION, -ARM,
 key = Stat,
 value = Value)
Fans of the pipe would argue that it creates a more natural, readable flow as well as reducing the amount of typing we have to do. It’s a very different way of programming however and takes some getting used to. Personally, I’m a convert and so I can only encourage you to invest the effort in learning something new.
[bookmark: r-and-big-data]R and Big Data
Many of the examples above are taken from the dplyr package. Underneath this sits another package, dbplyr, which enables you to work with remote database tables as if they were in-memory data frames. In other words, dbplyr translates dplyr code into the appropriate SQL for most common databases, including some distributed systems such as HDFS (Hadoop). Along with other recent developments such as the creation of packages like SparkR or sparklyr (R front ends for Apache Spark, now the “go-to” big data processing engine), R is now a realistic choice when it comes to high performance, big data analytics.
[bookmark: conclusion]Conclusion
In this article I’ve covered only a tiny fraction of the tidyverse capabilities in order to highlight some important functionality that anyone using R, or considering using R, should be aware of. The key message is that a lot has changed over the past couple of years and modern R code is a lot more readable and accessible than it used to be. If you’re not already on board then I urge you to give it a try.
rId27.png

rId36.png

