

YXYXYXYXXX

Global Drug Development Analytics

A systematic framework to compare methods for subgroup identification in realistic scenarios

Björn Bornkamp PSI Subgroup SIG Webinar November 17, 2021

Contributors

- Sophie Sun
- Kostas Sechidis
- Yao Chen
- Jiarui Lu
- Chong Ma
- Ardalan Mirshani
- David Ohlssen
- Marc Vandemeulebroecke

Personalized medicine on the rise

- 39% of FDA-approved therapies in 2020 are personalized medicines¹
 - stable over past few years, up from <10% in 2010</p>
- Most (all) biomarkers close to drug mechanism (highly biologically plausible)
- What about situation with lower biological understanding & more covariates/biomarkers?
 - Statistical learning approaches to rescue?
 - How well do these methods work?
 - Which methods work better?
- Personalized Medicine Coalition (PMC). Personalized medicine at FDA the scope and significance of progress in 2020, <u>https://personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/PM_at_FDA_The_Scope_Significance_of_Progress_in_2020.pdf</u>
 PMC categorizes personalized medicines as those therapeutic products for which the label includes reference to specific biological markers, often identified by diagnostic tools, that help guide decisions and/or procedures for their use in individual patients.

Overview

- Data generation
- Metrics
- Compared methods
- Results

Data generation

■ Simulate data from (A – treatment, X – baseline covariates)

$$Y \sim N(f(\mathbf{X}, A), \sigma^2)$$
$$f(\mathbf{X}, A) = f_{prog}(\mathbf{X}) + A\left(\beta_0 + \beta_1 f_{pred}(\mathbf{X})\right)$$

- β_1 measures amount of treatment effect heterogeneity
 - $\beta_1 = 0$ all patients have the same treatment effect
- Open question: How to choose
 - Sample size, σ , overall treatment effect (determined by β_0 , β_1)
 - Magnitude of prognostic effects $f_{prog}(X)$
 - Amount of treatment effect heterogeneity (determined β_1)
 - Distribution of X
 - Functional form of $f_{pred}(X)$

Simulation scenarios

- Sample size, σ , overall treatment effect (determined by β_0 , β_1)
 - Choose these parameters so that power of trial is 50%
 - Nuisance parameter when it comes to detection of differential treatment effects
- Magnitude of prognostic effects f_{prog}(X)
 - Use real trial data; develop model for control arm and determine R^2 . Iterate size of prognostic effects such that the specified R^2 is obtained
 - Use two prognostic covariates (linear effects)
 - Use scenarios so that one prognostic covariate is predictive (the other not)

Simulation scenarios (cont)

- Amount of treatment effect heterogeneity (determined β_1)?
 - Choose different scenarios based on the underlying true simulation model
 - Calculate β_1 that can be detected with 80% at a one-sided type 1 error of 10%
 - Vary β_1 in a 2-fold range
- Distribution of X?
 - Use synthpop R package (Nowok et al 2016) fitted to real trial covariate data to preserve correlation structure
 - Generate X using synthetic data
 - Here use 30 candidate covariates
 - 8 categorical (7 of them binary)
 - 22 continuous (standardized to [0,1])

Scenarios investigated $f_{pred}(X)$

Scenario	$f_{pred}(X)$
1d step	$\Phi(20(X_{11}-0.5))$
1d linear	X_{14}
2d step AND	$(X_{14} > 0.25) AND (X_1 = 'N')$
2d step OR	$(X_{14} > 0.3) OR (X_4 = 'Y')$

Metrics 1) Ability to detect treatment effect heterogeneity

- What is the evidence for treatment effect heterogeneity?
 - Or: How likely is it to see the observed evidence for treatment effect heterogeneity in case there is no treatment effect heterogeneity?
 - Schandelmaier et al. (2019) review 150 publications on assessing subgroup findings
 - Top recommendation: Significant test for subgroup by treatment interaction
 - Natural extension to multiple covariates: Global interaction test (appropriately adjusts for multiplicity)
 - Global interaction test/joint likelihood ratio test in a regression model

2) Ability to identify covariates/biomarkers that modify the treatment effect

- Two sub-questions
 - In the situation of no treatment effect heterogeneity, do methods select specific variable types (variable selection bias)
 - In the situation of treatment effect heterogeneity: What is the probability that the top identified variable is actually predictive?

3) Ability to identify patients with increased treatment effect & provide a reliable treatment effect estimate

- Difficult to find a metric for subgroup detection
 - Trade-off between size of subgroup and treatment effect within subgroup
 - Solution of trade-off often context-specific
- Use predicted individual treatment difference declare patients with top 25% (50%) predicted treatment effect as subgroup
 - Metric 1: Assess true treatment effect in this subgroup (should be as large as possible)
 - Metric 2: Estimated treatment effect in subgroup (as returned by method) versus true treatment effect in the subgroup

Methodologies

- Tree-based methods
 - Model-based partitioning (MOB)
 - GUIDE
- Forest based methods (tree ensembles)
 - Causal forest
 - MOB forest
- Shrinkage-based regression methods
 - LASSO (separately fitted by treatment arm)
- Standard methods
 - Univariate analysis
 - Multivariate regression
- Not all methods applied to all metrics

Probability to detect heterogeneity

- All methods control false positive rate; not overly conservative despite use of Bonferroni within MOB-L or Univariate
- Even for considerable treatment effect heterogeneity power small correct positive rate → Inclusion of 30 covariates creates natural "false" signals...
- MOB-L most consistent overall performance

Probability that top variable is predictive

Causal Forest

- Probability > 50% only for strong heterogeneity
- MOB-L and MOB-L Forest most consistent overall performance

True treatment effect for 25% of patients with largest *predicted* treatment effect

Compare true treatment effect in top 25% patients against the model prediction

- Naive standard methods (multivariate and univariate
 - regression)
 - → strongly overestimate treatment effect in subgroup; Need for adjustment
 - Causal forest, MOB-L Forest and LASSO with better performance

MOB-L Forest

Causal Forest

Multivariate Univariate Lasso

Oracle

Insights

- Reliable signal detection is challenging (even for 30 variables/biomarkers)
 - Data alone often cannot provide definite evidence in most scenarios
 - → Take external data into account for subgroup assessment (mechanistic plausibility, external replication for similar drug or same drug in different indication)
 - → Recommendations in the EMA guideline on subgroup analyses
- Methodology comparison
 - No strong separation of most methods (depends on metric & scenario): MOB-L, GUIDE, LASSO and MOB-L Forest provide good results
 - Standard univariate and multivariate regression: Surprisingly good, but:
 Do not use unadjusted treatment effect estimates in subgroups based on univariate or multivariate regression models
- Plan to make simulation scenarios & data available as R package!

References

- Nowok B, Raab GM, Dibben C (2016). "synthpop: Bespoke Creation of Synthetic Data in R."
 Journal of Statistical Software, 74(11), 1–26. doi: 10.18637/jss.v074.i11
- Schandelmaier, S., et al. (2019). A systematic survey identified 36 criteria for assessing effect modification claims in randomized trials or meta-analyses. *Journal of clinical epidemiology*, 113, 159-167.

YXYXYXYX

Thank you

