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Define causality in regulatory context

“Central questions for drug development and licensing are to establish the
existence, and to estimate the magnitude, of treatment effects: how the
outcome of treatment compares to what would have happened to the same
subjects under alternative treatment (i.e. had they not received the
treatment, or had they received a different treatment). ”

ICH E9 (R1) (2019) Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical
Principles for Clinical Trials
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Causal inference conce pts

Causal Estimands

* Individual-level causal effect: Y, (1) — Yi(0)

* Population-level causal effect
= Average treatment effect (ATE)

- E{Y (1) — Y(0)}

e Subgroup-level causal effect

= Average treatment effect among treated (ATT)
=E{Y (1) - Y(0)|T = 1}

* Can also define in terms of ratios, other sub-groups, etc.
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Causal inference conce pts

Causal assumptions

* Consistency: Y =T*Y(1)+ (1 —-T)*=Y(0)

* Yi=Yi(1) if subject i is treated (i.e., Y; = 1)

* Yi=Yi(1) if subject i is control (i.e., Y; = 0)

®* May not hold under poor treatment adherence, lost-to-follow-up, and interference
* No unmeasured confounding: T 1L {Y(1),Y(0)}|C

® Aka: Strong ignorability, conditional exchangeability, exogeneity, etc.

® Clinical judgement is often required for regulatory evidence generation

* Positivity: Pr(T =t | C =c) > 0forall (t,c)
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Causal inference conce pts

Limitations of observational studies

* No unmeasured confounding can be violated: T 1L {Y(1),Y(0)}| C
* How aboutRCTs? T 1L {Y(1),Y(0)}
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Causal inference roadmap *

|. Describe the observed data and the data generating experiment/process

ll. Specify a realistic model for the probability distribution of observed data

[1l.Define the causal and target estimand
|V.Select an estimator of the target estimand with desired properties

V. Develop an uncertainty estimator of the estimator for statistical inference

Vl.Interpret the statistical results

* Ho et al. (2021) The Current Landscape in Biostatistics of Real-World Data and Evidence: Causal Inference Frameworks
for Study Design and Analysis. DOI:10.1080/19466315.2021.1883475
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lllustrative Synthetic Data

Synthesis the Treatment Arm data based
on the available Control Arm data of an
Oncology vaccine ftrial
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Hypothetical examples inspired by a true trial...

* START trial (NCT00409188)

* Multi-center Phase Ill randomized, double-blind placebo-controlled

* Vaccine Stimuvax (L-BLP25 or BLP25 Liposome Vaccine)

* Control arm data only

®* 504 subjects with unresectable stage Ill non-small cell lung cancer

* Each followed for 3 years

* Based on the control data to generate treatment arm data with desirable

properties for the following illustrative examples

Sources: Project Data Sphere https://www.projectdatasphere.org/ ; https://clinicaltrials.gov/study/NCT00409188
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https://www.projectdatasphere.org/

Baseline covariates of 500 control subjects

Region

37.4% Other;

41.0% West Europe

j W, W, =0 w;=1 W; =2
1 |Age Mean 60.80 (SD=9.05) years

2 | Sex 32.0% female 68.0% male --

3 | Smoking 6.6% No 93.4% Yes =

4 | Histology 33.4% other 57.6% SCC -

5 |ECOG 56.8% Full Active 43.8% Restricted -

6 |Advanced stage 40% Stage IlIA 60% Stage IlIB or lIIC =

7 | Chemo. type 69.4% Concomitant 30.6% SCC --

8 |Chemo. response 69.6% Other 30.4% SCC --

9

21.6% N Ameri.ca

é Pfizer
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SCC = Squamous Cell Carcinoma




Create treatment data based on available control data

Steps to create a synthetic vaccine subject cohort

1. Draw a patient with replacement from control arm

2. Create a vaccine patient who is more likely to be: Older,
male, smokes, at Stage IlIA, and receiving squamous cell
carcinoma chemotherapy, compared to the control
patient

3. Create synthetic vaccine outcomes like the figure (blue =
vaccine group vs. red = control group)

4. Combine Steps 2-3 outputs to synthesize a vaccine
patient observation

5. Repeat Steps 1-4 by n,, times
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Causal inference roadmap *

|. Describe the observed data and the data generating experiment/process
|l. Specify a realistic model for the probability distribution of observed data
[1l. Define the causal and target estimand

V. Select an estimator of the target estimand with desired properties

V. Develop an uncertainty estimator of the estimator for statistical inference

VI. Interpret the statistical results

* Ho et al. (2021) The Current Landscape in Biostatistics of Real-World Data and Evidence: Causal Inference Frameworks
for Study Design and Analysis. DOI:10.1080/19466315.2021.1883475
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Ex 1: Survival

A cohort study with a survival outcome
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Causal inference framework 01

Step |: Describe observed data & data generating experiment

0= (A, Wy, , Wy, A, T) = Observed data of a patient ~P, (i.i.d.)

* (Wy,--,Wy) = Baseline covariates

* A = Assigned treatment (vaccine or not) at baseline

®* A = Status, 1 (death) or O (censored)

* T =min(T,C) = Observed time, where T = time to death and C = censoring time
* N(t) =I(T <t,A=1) =Process of death

* A(t) =I(T <t,A = 0) =Process of censoring

®* n.,=500andn, = 1,000
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Causal inference framework 02

Step Il: Specify a realistic model for observed data distribution (1)

® Observed longitudinal data of a patient: 0 = {W, A, (N(t),A(t):t=1,---,K)}

® Structural causal model:
W = fuw(Uw)
A= f(W,Uy)
AN (t) = fany(Pa(AN(), Ugn )t = 1, K
dA(t) = faaw)y(Pa(dA®), Ugagry), t =1, K

where Pa(dN(t)) = (W,A, N(t—1),A(t - 1)) denotes the history before dN(t) is realized &

Pa(dA(t)) = (W,A, N(t), A(t — 1)) denotes the history before dA(t) is realized.
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Causal inference framework 03

Step Il: Specify a realistic model for observed data distribution (2)

®* Assuming all exogeneous variables U = (UA, Uw, Uan(t), UdA(t)) are independent — sequential

independent assumption is hold for both death and censoring indicators.

® Positivity assumption is also made for both survival and censoring functions.

®* Some of these causal assumptions may not be testable.
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Causal inference framework 04

Step lll: Define the causal estimand and target estimand

+ Define T% = T%A=0 a5 the potential outcome of treatment A = a, we choose the average

treatment effect (ATE) as the causal estimand:

0* = P(T' > 1) — P(T° > 1), where t = 12, 24, or 36 months
®* Following casual assumptions in Step 2, the target estimand below is equal to ATE:

6 = EW,O[SO(TlA — 1; W) - SO(TlA = O' W)]’

where S, (7|4, W) is the conditional survival function of T given A and W. And we can connect
survival function with hazard function Qo (t|4, W) = Po(T = t|T = t, A, W),

S, (7|4, W) = 1_[(1 — Qo(tlA,W)).
t=1
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Causal inference framework 05

Step IV: Select an estimator of the target estimand
Step V: Develop an uncertainty estimator of the estimator

* Use the targeted maximum likelihood estimator or minimum loss-based estimator (TMLE) (van

der Laan and Rose 2011)
* Asymptotically efficient under mild model assumptions
* R package “suvtmle” available to implement the TMLE approach

 The TMLE approach also provides an estimator of the uncertainty based on the efficient influence

curve theory.
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Causal inference framework 06

Step VI: Interpret the statistical results

* |f the causal assumptions in Step Il are plausible, the hypothetical vaccine’s
average treatment effect in terms of cumulative incidences of death by 12, 24, and
36 months are as follows:

A

T 7, SE 95% C. 1.
12 months —1.1% 2.5% (—5.9%, 3.7%)
24 months —2.5% 3.8% (—9.8%, 4.9%)
36 months 8.0% 4.1% (—0.1%, 16.1%)
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Ex 2: Binary & Continuous

A Cohort Study with binary and
continuous outcome
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Causal inference framework 07

Step |: Describe observed data & data generating experiment

0= (A Wy, ,W,y,Y) = Observed data of a patient ~P, (i.i.d.)

(W, -+, Wy) = Baseline covariates
* A = Assigned treatment (vaccine or not) at baseline

®* n.=500andn, =1,000
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Causal inference framework 07

Step |: Describe observed data & data generating experiment

0= (A Wy, ,W,y,Y) = Observed data of a patient ~P, (i.i.d.)

(W, -+, Wy) = Baseline covariates
* A = Assigned treatment (vaccine or not) at baseline

®* n.=500andn, =1,000
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Causal inference framework 08

Step Il: Specify a realistic model for observed data distribution (1)

* Observed longitudinal data of a patient: 0 = {W, A, Y}

® Structural causal model:
W = fW(UW)
A=f,(W,U,)

Y = fY(W; A, UY)
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Causal inference framework 09

Step Il: Specify a realistic model for observed data distribution (2)

®* Assuming all exogeneous variables U = (UA, Uw, Uan(t), UdA(t)) are independent —

randomization assumption is hold:

Ye u A|w,

where Y¢ = fy (W, a,U,) is potential outcome fora = 1,0.
® Positivity assumption:

P(A=a|lW =w) >0, fora = 1,0if P,(w) > 0.

épﬁler Business Group Business Subgroup
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Causal inference framework 10

Step lll: Define the causal estimand and target estimand

* We select ATE as the causal estimand:
Eo(Y") — Eo(Y°).
®* Following casual assumptions in Step 2, the target estimand below is equal to ATE:

Ware(Py) = EqwlEo(Y|A =1, W) — Ey(Y|A = 0,W)].

Step VI: Interpret the statistical results

® For binary outcome, the TMLE estimate P75 = 16.6% with 95% CI = (11.6%, 21.7%)
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Looking forward

@ Pﬁzer

An example of a single arm study with an external control is in progress.
Specifying the causal estimand of interest can guide statisticians in choosing
the right target estimand in absence of randomization.

The framework help statisticians decouple estimand and estimator and clarify
the design and analysis of RWE studies.

The framework make the causal assumptions explicit for casual interpretation
of a RWE results.

Average treatment effect of the treated can be useful.

Various types of intercurrent events require further research.
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Create treatment data based on available control data

Steps 1-2 to create vaccine arm data from control

1. Draw a control patient with replacement from the controlled arm of n, patients

2. Create a vaccinated patient’s baseline Wj’ from the control patient’s W;, ,j =1,---,9:

@ Pﬁzer

censored), and T = min(T, C) is the observed time.

0O=A=0W,--,WyAT), where Wy, ---, Wy are baseline covariates, ), A is status (death v

j=2,..,8 P(W/' = 1|W; = 0) = pj01; P(W} = O|W = 1) = pj 10
i=9 P(Wy = 1|Wg = 0) = pgo1; PWy = 2|Wy = 1) = pg 15;

P(Wq = 0[Wy = 2) = pg 20
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Create treatment data based on available control data

Steps 3-5 to create vaccine arm data from control

3. Create the vaccine patient’s outcomes (A’, T") based on the control’s outcome (A, T):

P(A, = 1|A = O) = p5,01

P(A"=0[A=1) =ps10

ifA" =1

ifA"=0

T' = T exp{Beo+ 2 B ;W +U(=0.5,0.5 )}
J

T' = T exp{Beo+ z Be W + U(—0.5,0.5)}
J

Ps,01 Ps,10 (:Bt,O» "y .Bt,9) (,Bc,o: "y .80,9)

0.1 0.2 (—6,0.1,0,—0.1,0.1,0,0.3,—0.3,0.2,0) /3 (0, -, 0)

4. Combine the values from Steps 2-3 into an observation of a vaccinated patient

5. Repeat Steps 1-4 by n,, times -> vaccinated patients with covariates and outcomes.
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