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Survival as primary endpoint

• Survival time is the most relevant outcome in oncology trials

• We focus on randomized controlled trials with two groups
(treatment versus control)

• Aim: Compare distributions of survival times T to show superiority
of treatment

• Problem: Survival times are censored for patients who are alive at
final follow up

• Cannot compare, e.g., means without parametric model

• Standard approach: compare hazard functions

Hazard at time t: λ(t) = limh↓0 P(T ∈ (t, t + h]|T > t)/h

Survival distribution: S(t) = P(T > t) = exp
{
−
∫ t

0
λi (s)ds

}
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(Weighted) Logrank test

• Standard test for censored data to compare two survival distributions
via their hazard functions.

• Null hypothesis: H0 : λtrt(t) ≥ λctr (t), ∀t ≥ 0

• Test statistic

z =
∑
t∈D

w(t)(dt,ctr − et,ctr )/

√∑
t∈D

w(t)2var(dt,ctr )

d number of observed events in control group at time t
e number of expected events in control group under least favorable
configuration in H0.
D is the set of all observed event times
w(t) weight for contribution at time t

• Time stratified Cochran-Mantel-Haenszel test

• Asymptotically z is standard normal under least favorable
configuration in H0.

Study design and hypothesis testing under non-proportional hazards

* Section of Medical Statistics, Medical University of Vienna ** Merck 4/23



Proportional hazards (PH) assumption

λctr (t)/λtrt(t) = const.

Sample size planning and interpretation of logrank test are typically made
under this assumption. It is also the underlying assumption of Cox
regression. Under PH

• Logrank test is the most powerful rank invariant test for H0 (Peto
1972)

• Rejection of H0 implies Ptrt(T > t) > Pctr (T > t), ∀t
• Simple asymptotic relations for sample size calculation

But:

• PH assumption questionable for many oncology studies

• In particular, new generation of immune-oncology drugs require time
to unfold efficacy, resulting in observation of so called “delayed
onset” or “late separation” of survival functions (Anagnostou 2017).

• Starting point for this work
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Aims

• Identify relevant scenarios of non-proportional hazards

• Propose simple but flexible model for survival functions under
non-proportional hazards

• Compare power of different hypothesis tests under the identified
scenarios

• Perform conditional power calculations at interim analysis
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Sources of non-proportional hazards

• Delayed onset of treatment effect

• No treatment effect at early event times

• Changing hazards after disease progression

• Progression rate and subsequent hazards may depend on treatment

• Biomarker subgroups

• Patients positive for a specific biomarker may show increased
treatment benefit (e.g. EGFR inhibitors are effective only against
tumours that are free from mutations in the KRAS or NRAS genes,
Chan 2017)

• Composition of treatment group study population changes with time,
as biomarker positive patients survive longer

• Treatment switching after disease progression

• Control group patients may switch to treatment group medication
• Observed treatment effect at late event times is reduced

Study design and hypothesis testing under non-proportional hazards

* Section of Medical Statistics, Medical University of Vienna ** Merck 7/23



Proposed model

States are represented by boxes. Hazard functions λ. for transitions are
indicated next to the respective arrows. All hazard functions are modelled
as piecewise constant functions of time.
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Example for model with delayed onset
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Treatment effect starts after 100 days. Constant hazard rate under
control (black) and treatment (green) up to 100 days corresponding to
median survival of 11 months. Constant hazard rate under treatment
after 100 days corresponding to median of 18 months.
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Changing hazards after disease progression
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Hazard rate under control corresponds to median survival of 18 months
before and 11 months after progression. Hazard ratio of 0.6 between
treatment and control for both rates. Common rate of progression with
median progression time of 5 months.
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Biomarker subgroups
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50% of patients are biomarker positive, their median survival is 33
months versus 11 months for biomarker negative and control patients.
(Constant hazards, but composition of population changes with time.)
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Treatment switching
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After progression, control patients switch to treatment with 50%
probability. Constant hazard rates corresponding to median survival of 18
(treatment) versus 11 (control) months. Median time to progression is 5
months in both groups.
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Hypothesis testing

We consider weighted logrank tests to put more weight on early,
intermediate or late event times.

• Standard logrank test: w(t) = 1

• Fleming-Harrington ρ− γ family: w(t) = Ŝ(t)ρ(1− Ŝ(t))γ . We
consider (ρ, γ) ∈ {(0, 1), (1, 1), (1, 0)}

• Maximum test:

• k weight functions w1(t), . . . ,wk(t) (from ρ− γ family)
• Corresponding weighted log-rank statistics z1, . . . , zk
• Maximum test statistic zmax = maxi=1,...,k |zi |
• Under H0, approximately Zmax ∼ Nk(0,Σ)
• To estimate Σ use cov(wi (t)dt,ctr ,wj(t)dt,ctr ) = wi (t)wj(t)var(dt,ctr )

(assume weights non-random or converging in probability to
non-random function)

• Calculate p-value PH0 (Zmax > zmax) from multivariate normal
distribution

• See Tarone 1981, approach has recetly received some attention.

• Alternative: Modestly weighted logrank tests Magirr and Burman, 2018
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Different emphasis of Fleming-Harrington weights T. Hasegawa
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Figure 1. Weight functions in the Fleming–Harrington’s G�,� class. Weights are uniform in (a) and emphasize early, middle, and late differences, respectively, in (b), (c),
and (d)–(f ).

.j D 1, 2/. We will then, after accrual ends, follow the study
patients for time � . That is, we will perform the final analysis
at time T C � after the start of enrollment, and the range of
follow-up time for patients will be from � to T C � . The study
period Œ0, T C �� is partitioned into M subintervals of equal length
ft0 D 0, t1, t2, : : :, tM D T C �g in calculations, where M D

floorŒ.T C �/b� and b is the number of subintervals per time unit.
Floor[x] is defined as the largest integer not greater than x. Let
hj.ti/ be the hazard function for group j at time ti . We need to
calculate the expected number at risk in group j at time point
ti.i D 0, : : :, M�1/, which will be denoted by Nj.i/. For each subin-
terval, [ti , tiC1/, the conditional probability of death for a patient
in group j can be represented approximately by hj.ti/=b. Because
uniform accrual is assumed, the probability to be censored in each
subinterval is approximately 1=fb.T C � � ti/g for ti > � and 0
for ti 6 � . To allow for unequal sample sizes, let wj be the propor-
tion that we plan to assign to group j. These considerations lead
to Nj.i/ as follows:

Nj.0/ D nwj ,

Nj.iC 1/ D Nj .i/

�
1 � hj.ti/

�
1

b

	
�

�
1

b.T C � � ti/

	
1fti>�g



,

where n is the total sample size, and the indicator function
denoted by 1fti > �g is equal to 1 if ti > � and 0 otherwise;
then the expected number of events for each subinterval Œti , tiC1/

is calculated as follows:

Di D Œh1.ti/N1.i/C h2 .ti/N2.i/�
1

b
.

Now, let Sj.ti/ be the survival function for group j at time ti , �i

D h2.ti//h1.ti/ and �i D N2.ti/=N1.ti/. Note that the hazards
within each subinterval are assumed to be proportional. Under a
fixed local alternative, Lakatos [12] has shown that the weighted

log-rank statistic has, in general, a normal distribution with unit
variance and an approximate expectation of

E D

XM�1

iD0
Diri

h
�i�i

1C�i�i
� �i

1C�i

i
rXM�1

iD0
Dir

2
i

�i

.1C�i/
2

,

where ri is the weight function at time ti . When the
Fleming–Harrington’s G�,� class of weights is applied,
ri D fS.ti/g

�f1 � S.ti/g
� . Here, we propose that the weighted

survival function S.ti/ D w1S1.ti/C w2S2.ti/ be used as a substi-
tute for the Kaplan–Meier estimate of the survival function in the
pooled sample, originally proposed by Fleming and Harrington
[6]. A weighted combination of the survival functions is used
because the unequal sample size needs to be taken into account.
Note that E can be expressed equivalently as

E D n
1
2 E� D n
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3
775 ,

where

D�i D
�

h1.ti/N�1 .i/Ch2.ti/N�2 .i/
� 1

b

N�j .0/Dwj , N�j .iC1/DN�j .i/
h

1�hj.ti/
� 1

b

�
�
�

1
b.TC��ti/

�
1fti>�g

i.

Treating the weighted log-rank test statistic as N

�
n

1
2 E�, 1

	
with

power 1 � ˇ and a one-sided significance level ˛, we have

ˇ̌̌
ˇn 1

2 E�
ˇ̌̌
ˇ D z˛ C zˇ ,1

3
0

Copyright © 2014 John Wiley & Sons, Ltd. Pharmaceut. Statist. 2014, 13 128–135

Figure 1 from T. Hasegawa, Pharmaceut. Statist. 2014, 13 128-135
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Simulation scenario for randomized controlled trial

• Equal allocation ratio to treatment and control

• 1 year recruitment at rate of 300 patients/year

• Analysis after 130 events in total have been observed (appr. 1.5
years with assumed scenarios)

• Under proportional hazards this number of events would correspond
to approximately 80% power of the logrank test with a hazard ratio
of 0.6 at one-sided level of significance of 0.025.

• No random censoring due to drop outs

• Survival times drawn from piecewise constant hazards models shown
before

• 10,000 simulation runs per scenario
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Power (%) under the four scenarios

Test Delayed Progression Biomarker Treatment
weight (ρ, γ) onset effect Subgroups switching
Equal (0, 0) 35 81 75 60
Early (1, 0) 27 80 72 61

Intermediate (1, 1) 49 73 70 46
Late (0, 1) 49 68 66 40

Maximum all 45 79 73 56
Maximum (0, 0) (0, 1) 45 79 73 55

• Best test depends on scenario.

• Maximum test typically has power close to best included test.

• Standard logrank test performs well in many non-proportional hazard
scenarios.

• Similar observations were made under more complex scenarios.
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Conditional power based on interim data

• Assume interim data after certain number of events

• Want to calculate conditional power for final analysis after planned
number of events

• Under design assumptions, marginal survival function is known

• For a given censored observation ycens , we may calculate the
conditional survival function P(Y > t|Y > ycens)

• Sample survival times for observations censored at interim from
conditional distribution

• Also sample additional patients if recruitment ongoing

• Thus, sample data set with planned number of events, conditional
on interim data

• Use multiple conditional samples to calculate conditional power

• Stopping for futility based on conditional power
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Conditional data simulation example

True: Delayed onset of treatment action after 100 days.
Hazard rates (per year): λctr = λtrt,<100d = 0.002, λtrt,≥100d = 0.001
Recruitment 1 years, with rate 300 patients/year
Events at interim: 65, events at study end: 130

Observed Interim Data

Simulated Delayed
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Conditional power Logrank test 92%, Maximum test 89%
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power assuming different scenarious

Delayed Progression
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Conditional Power (%) under true scenario is delayed

Test Delayed Progression Biomarker Treatment
weight (ρ, γ) onset effect Subgroups switching
Equal (0, 0) 92 97 96 90
Early (1, 0) 83 87 87 69

Intermediate (1, 1) 90 94 93 80
Late (0, 1) 91 97 97 91

Maximum all 89 95 94 86
Maximum (0, 0) (0, 1) 89 95 94 85

• Take Conditional Power under scenario which seems most reasonable based on observed
interim data

• Alternatively: Give prior on scenarios, calculate posterior and average CP accordingly

• Potential Adaptations: Stopping for futility.

• If study is not stopped for futility, think of further adaptations: change recruitment speed
(e.g., decrease to have more late events), sample size and number of events for final analysis

• Interim efficacy testing with group sequential designs Ghosh et al. 2018, Magirr and Jimenez 22
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Discussion

• The effect of different sources of non-proportional hazards in clinical
trials can be modelled in a piecewise constant hazard framework

• Allows for complex scenarios

• Power simulations to aid planning of trials under assumed
non-proportional hazards

• Maximum test as robust alternative to single weighted logrank tests

• Conditional power analysis allows for futility stopping decision

• Note: recruitment and censoring rates, too, determine if more early
or late events are observed and hence affect power under
non-proportional hazards.

• Implementation of all methods in our R package NPH

• How to quantify effect sizes under NPH? Use simultaneous test of
multiple parameters Ristl et al. 22
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Thank you for your attention!
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Backup: Piecewise constant hazard function

For each subpopulation and treatment group, define survival function via
a piecewise constant hazard function.

Define k time intervals [ti−1, ti ) with 0 = t0 < t1 . . . < tk =∞ and
constant hazard λi .

The hazard function is λ(t) =
∑k

i=1 λi1t∈[ti−1,ti )

And the survival function is

S(t) = exp

{∫ t

0

λ(s)ds

}
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Backup: Model different hazard after disease
progression

X ... time to disease progression
λD(t) ... hazard function before disease progression
λPD(t) ... hazard function after disease progression
Conditional on X = u, the hazard function and survival function are

λ(t|X = u) = λP(t)1t≤u + λPD(t)1t>u

S(t|X = u) = exp

{
−
∫ t

0

λ(s|X = u)ds

}
Distribution of X is modeled via piecewise constant hazards, independent
from hazard functions λP(t) and λPD(t).
The survival function is obtained by integrating over the possible
progression time points

S(t) =

∫ t

0

S(t|X = u)p(X = u)du

Note: Correlation between progression free survival (PFS) and overall
survival (OS) results from PFS = min(OS ,D) and from different hazards
for death before and after disease progression.
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Backup: Mixture of subpopulations

• In general, assume m subpopulations with proportions
pi , i = 1, . . . ,m of the full population and survival functions Si .

• Then the overall population survival function is S(t) =
∑m

i=1 piSi (t).
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Conditional data simulation Case Study B

Observed Interim Simulated Delayed
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Conditional Power (%) for Case Study B

Test Delayed Progression Biomarker Treatment
weight (ρ, γ) onset effect Subgroups switching
Equal (0, 0) 44 62 62 44
Early (1, 0) 30 33 38 19

Intermediate (1, 1) 31 37 40 21
Late (0, 1) 43 66 64 49

Maximum all 36 54 53 36
Maximum (0, 0) (0, 1) 37 53 53 34

• Conditional Power less in Case Study B

• For Max test lowest power for delayed onset and treatment switch
scenarios

• If study is not stopped for futility, think of further adaptations:
change recruitment speed (e.g., decrease to have more late events),
sample size and number of events for final analysis
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Adaptive Tests for Survival Data (I)

Patients recruited in the first stage maybe still under risk in the second
stage.

• Early Stopping for Efficacy: Group sequential designs for maximum
tests Mehta & Ghosh 2018, Ghosh, 2018

• Adaptions: The combination test and the conditional error approach
can be extended to survival data and the (weighted) log-rank test
(independent increments property).

Wassmer 2006, Schaefer & Mueller 2001

• Stagewise p-values are calculated from the events occuring in each
stage.

• Caveat: This may lead to biased tests if adaptations are based on
covariate information or secondary endpoints of first stage patients
censored at the time of the interim analysis. E.g., adaptations based
on PFS when the primary endpoint is OS. Bauer & Posch, 2001
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Adaptive Survival Trials (II)

• Test procedures where the follow-up time from first stage patients is
fixed control the type I error rate, but may not include all events in
the test statistics if the trial is extended.

Jenkins et al. ’11, Irle & Schäfer, ’12, Joergens et al. ’19

• Conservative tests based on all observed data are typically strictly
conservative. Magirr et al. 2016
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